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PREFACE

THE purpose of this book is to give a comprehensive and up-to-date
aoccount of all the principal mathematical methods used in' neutron
Sransport theory, together with a brief discussion of their relative suita-
bility in various situations.

Some of these methods have already been described in previous books
on related subjects such as nuclear reactor theory and the theory of
radiative transfer in stellar atmospheres. Many other equally important
methods, however, have been available only in technical reports, or in
isolated articles in periodicals. This is particularly true of the more
refined forms of the spherical harmonics method, which is in fact the
most powerful method in existence, of the Serber—Wilson method, which
is veryuseful in certain problems, despite its limited rangeofapplicability,
and of the chief methods, apart from age theory, for dealing with
energy-dependent problems, namely the method of polynomial approxi-
mations, Feynman’s method, etc. The author’s purpose has been to
attempt to fill this gap. '

The subject is developed in .a self-contained manner; that is, no
previous knowledge of it is necessary. It was felt, however, that the
majority of readers of a book giving a comprehensive survey of the more
advanced methods will, in fact, have some elementary knowledge of the
- subject. The order and method of presentation therefore give priority
to the needs of such readers, rather than to those who use the book as
their first introduction to the subject. In particular, instead of starting
with a simplified physical picture, deriving the more elementary approxi-
mations, and then proceeding to refine these, we have preferred to begin
with a precise formulation of the problem and to present any simplified
treatment that may be available as an approximate method of solving
the exact equations. It was felt that this would allow a more unified
presentation of the subject, and an immediate assessment of the range
of applicability of each approximate method. Admittedly this means
that a reader who wishes for a first introduction to the subject will need
to go through a greater amount of formal work before he can understand
‘the problems involved. To start with the precise formulation of the

problem does not, of course, preclude the use of tentative and semi-
intuitive arguments in seeking more profitable approximations, and
considerable use has been made of such arguments for this purpose.

The knowledge of mathematics which the reader is assumed to possess
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is similar to that required in other branches of mathematical physics.
Besides the material contained in Whittaker and Watson’s Modern
Analysis, he is presumed to know the definition, inversion formulae, and
elementary properties of Fourier, Laplace, and Mellin transforms.’ No
previous knowledge of their applications is assumed. No use is made of
quantum mechanics in neutron transport theory, provided that the laws
governing the results of individual collisions aré assumed; these laws,
however, are to some extent of quantum-mechanical origin,

In oonclusion, the author would like to stress that he would have had
great difficulty in writing the book, had it not been for the generous
assistance of a number of people. He is particularly indebted to Dr. J. B.
Sykes, whose collaboration has almost amounted to co-authorship.
Dr. J. H. Tait and Mr. K. T. Spinney have written Chapter XXVI
on Holte’s method, while Mr. K. W. Morton has made appreciable
contributions to Chapter XVI on the Monto Carlo method. It is a
pleasant duty to thank Dr. B. H. Flowers, Dr. J. H. Tait, and other
members of the Theoretical Physics Division, A.E.R.E. Harwell, for
many helpful suggestions and constructive criticisms, and Dr. Flowers,
Profeesor R. E. Peierls, and Dr. G. Placzekt for their encouragement.
Professor H. A. Bethe, Dr. J. P. Elliott, Professor R. P. Feynman,
Dr. J. C. Mark, and Professor R. Serber have kindly given permission to
include hitherto unpublished contributions to neutron transport theory.
Finally, the author is greatly indebted to Professor W. H. Watson and
the Computation Centre of the Physics Department, University of
Toronto, for facilities which enabled him to complete the book.

B.D.
Depariment of Physice
University of Toronto
June 19556

1 Since deceased.

Note added in second impression. The author’s thanks are due to
Dr. A. Hassitt for a number of comments which have been incorporated
in the second impression (pp. 35960, 416).
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 INTRODUCTION
THE SUBJECT OF NEUTRON TRANSPORT THEORY

NeuTRON transport theory is concerned with the migration of neutrons
through bulk media. This migration involves a large number of random
events, namely collisions, and to study it we must first ascertain the laws
governing tho results of individual collisions, und then svlve the statistioul
problem of determining the result of a large number of random collisions
governed by these laws. The former problem belongs to the field of
nuclear physics, and of classical and quantum mechanics, and neutron
transport theory begins with given laws governing the results of indivi-
dual collisions and considers the statistical problem of determining the
distribution of the neutrons in space, angle, and energy.

The chief direct applications of neutron transport theory are in the
study and design of nuclear reactors and in the interpretation of experi-
ments in nuclear physics. In these applications, the neution energies lie
between a few million electron-volts and about one-fortieth of an
electron-volt. The upper limit corresponds to neutrons emitted in
fission or by natural-radioactivity sources, while the lower limit corre-
sponds toneutronsin thermal equilibrium with the swrrounding medium ;
these cannot on the average lose any further energy in subsequent
collisions. Accordingly, neutron transport theory is ooncerned with
neutrons whose energies are either in this range, or such that the laws
governing the results of individual collisions (which we may call the
collision laws) are the same as for energies in this range. ,

The fact that one of the main applications of neutron transport theory
is to the study and design of nuclear reactors allies it to nuclear reactor
theory. The latter, however, is a branch of engineering, which relies on
neutron transport theory for information concerning the distribution
of the neutrons in space, angle, and energy, much as neutron transport
theory in turn relies on nuclear Physics and mechanics for information
concerning the collision laws. Accounts of nuclear reactor theory
contain, of course, some discussion of the migration of neutrons, but thig
is usually based on a simplified physical picture, omitting the detailed
consideration of neutron migration a8 a series of individual collisions
and passing directly to its effects on the spatial distribution, just as the
equations of heat conduction or of chemical diffusion are usually derived
by disregarding the individual events concerned and passing directly
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%o the net result of these. We shall see that such a simplified treatment
leads, under suitable conditions, to a valid approximation to the spatial
neutron distribution at large distances from all sources and boundaries,
provided that certain quantities are suitably interpreted. By ‘large
distances’ we here mean those large compared with the mean Jree path,
that is, the mean distance travelled by a neutron between successive
collisions. This is the basis of the diffusion approzimation, which is
one of the approximate methods available in dealing with large bodies.
If, however, we are concerned with bodies of only moderate size, or with
boundary effects, more accurate methods, based on a more exact
oconsideration of neutron migration, have to be employed.

Neutron transport theory is sometimens called neutron diffusion theory.
We prefer the former name, however, in order to emphasize that our
treatment is based on the more exact consideration of neutron migration,
and not on the simplified model referred to above. The treatment
developed will therefore be applicable to bodies of any size, and not only
to large ones.

Much of the early work on neutron transport theory was concerned
with the distribution of neutrons in space and angle rather than in
energy, and an approximation was developed in which the energy
dependence was removed by integration. This is the constant cross-section
approximation, often called one-velocity-group theory. However, this
prooedure is only approximate, and is not very accurate except in a few
special cases, although these are of some practical importance. The
constant cross-section approximation retains its importance chiefly as
& means of familiarizing oneself with the mathematical techniques used
in neutron transport theory, and as a convenient method of solving a
number of auxiliary problems. We shall therefore begin our treatment
with a fairly detailed discussion of the constant cross-section approxima-
tion, but afterwards we shall give equal prominence to energy-dependent
problems.

We shall now indicate the relation between neutron transport theory
and other branches of physics. It has already been stated that neutron
transport theory is concerned with a statistical problem. Several other
such problems are of interest to the physicist: the transfer of radiation
in stellar atmospheres and radiative equilibrium in them; the penetra-
tion of X-rays and y-rays through scattering media; cosmic ray showers,
and so on. These processes differ only in that the collision laws are
different, and even these are very similar for some of the processes
mentioned. This is particularly true of neutron transport theory and
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radiative transfer in stellar atmospheres. In fact, the equations of the
oconstant cross-section approximation are identical with those for the
corresponding cage (a grey atmosphere with unpolarized light) in radia--
tive transfer theory. Thus several fundamental problems of neutron
transport theory have been considered, and partly solved, by astro-
physicists such as Schwarzschild, Milne, Hopf, and others, before the
neutron was even discovered, besides the more recent work of Chandra-
sekhar. Conversely, many of tho methods recently developed in neutron
transport theory could advantageously be used in problems of radiative
transfer, a

However, cven in this approximation there is an appreciable difference
between the two branches of Physics, in that neutron transport theory
presents a much greater variety of problems. In the radiative transfer
case, we are usually concerned with a star, which is a spherical body
whose radius is large compared with the mean free path, and can usually
be approximated by a half-space. In neutron transport theory, the
migration of neutrons through bodies of many shapes and sizes has to be
considered. Secondly, radiative transfer is always concerned with a
given star, whereas the ultimate object in neutron transport theory is
often to design a nuolear reactor, and this involves finding the oritical
size, i.e. solving an eigenvalue problem, Both these features call for a
greater variety and flexibility of methods for use in neutron transport
theory than are needed for the theory of radiative transfer.

Thus the scope of neutron transport theory is in some ways rather
wider than might have been expected. In other respects, however, it is
found to be more limited than the name might suggest. In partiocular,
while we shall consider systems containing more than one medium, each
medium will be regarded as homogeneous. In practice we often encounter
heterogeneous media of certain types, such as the lattice formed by
Placing rods of one material in another material, with the radius of
the rod and the spacing of the lattice lying within definite limits. The
determination of the neutron distribution in such a medium, using the
constants given by nuclear physics, might be regarded as a problem of
neutron transport theory. However, the development of methods of
caloulation suited to such a system, and the selection of the best experi-
ments to supplement our knowledge of the fundamental constants and to
avoid lengthy calculations of quantities more eadily determined experi-
mentally, belong rather to the theory of nuclear reactors, and will not be
disoussed in this book.

A second limitation of the scope of neutron transport theory, in the
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sense now eurrent, is connected with the energy range considered. We
have said above that, in the chief applications of neutron transport
theory, the energy range concerned is from a few MeV to about % eV.
The collision laws applied are therefore those valid for neutrons in this
energy range. Outside the above limits, the collision laws are different.
At energies of the order of 30 MeV, new processes which cannot occur
at lower energies are found, such as nuclear disintegrations giving the
stars observed in photographic emulsions. The collision laws for events
of this kind are as yet insufficiently well known to form the basis of a
statistical treatment, Moreover, the information required concerning
neutrons of such high energies is different from that desired regarding
neutrons in the range montioned above. If we considor neutrons of
energy below thermal, the problem ig even more different. Here the
main problem is not that of the result of random collisions of neutrons
with atomio nuclei, but that of the interaction of a beam of neutrons
with crystal lattices. This problem, however, belongs to a different
branch of physics, neutron diffraction theory, and is completely outside
the scope of transport theory.



PART 1
GENERAL ANALYSIS

I
THE PHYSICAL PROPERTIES OF NEUTRONS

1.1. The properties underlying the concept of diffusion
A NEUTRON j4 & houvy uncharged clementary particle, Of the foroes
which act upon it, the nuclear forces are by far the most important, and
they are the only ones that need be taken into account under the condi-
tions in which one is interested in the diffusion of neutrons. Since these
nuclear forces have an extremely short range, it follows that:

(A) the motion of a neutron can be described in terms of its collisions

with atomic nuclei and with other freely moving neutrons;

(B) these collisions are well-defined events;

(C) between such collisions a neutron moves with a constant velocity

—that is, in & straight line with a constant speed.

Three further points are to be noted.

Firstly, even with the strongest neutron sources and the most powerful
nuclear reactors, the number of neutrons present at any time in any
volume is negligibly small compared with the number of atomic nuclei
present in that volume, Consequently—

(D) the mutual collisions of freely moving neutrons may safely be

neglected, and only the collisions of neutrons with the atomio
nuclei of the surrounding medium need be taken into account.

Secondly, nuclear radii are very small compared with atomio radii, the
ratio being of the order of 10—%, Thus, at a point outside the atom, the
solid angle subtended by the nucleus is of the order of 10~# compared
with that subtended by the whole atom. Hence, on classical reasoning,
the neutron will pass through some 10® atomic systems between succes-
give collisions with nuclei. This number is so large that we may safely
oonclude that

(E) for a neutron travelling at a given speed through a given medium,
the probability of collision per unit path length is a constant.
250890 B
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In aotual fact, olassical reasoning is inexact; we should take into
aocount such quantum-mechanical effects as uncertainty of localization
of the neutron, resonances, etc. These depend on the speed of the
neutron, and 8o the number of atoms traversed between collisions will
also depend thereon. However, the above order-of-magnitude estimate
will be sufficiently accurate unless there are very strong resonances near
the thermal energies, and these occur in only a few elements. Even in
these cases the strongest resonances are usually capture resonances; thus
the neutrons are almost certain to be captured, rather than scattered, if
they undergo a collision. In these conditions it clearly matters little
whether (E) is strictly correct or not. ‘

Thirdly, it is fairly natural to agsume that

(F) the neutron or neutrons emerging from a collision do 80 at the
point in space where the collision took place.

This is striotly true except in the case of fission, and there the error
involved in the assumption is negligible.

1.2, The results of individual collisions

1.2.1. The relevant energy range. Thermal and non-thermal neutrons

As has been pointed out in the Introduction, neutron transport theory
is primarily concerned with neutrons that are originally emitted by fission
or by some natural-radioactivity source of neutrons. The energy of such
neutrons is of the order of & few MeV. This energy is many orders of
magnitude greater than the energy (4 eV at room temperature) at which
a neutron would be in thermal equilibrium with the medium in which
it diffuses. Thus, when a fission (ete.) neutron undergoes scattering, it
must lose energy, and will continue to do so until it either is absorbed by
some nucleus or has reached thermal equilibrium with the surrounding
medium. The neutron energies in which we shall be interested, therefore,
range from a few MeV down to about  eV.

When a neutron in this energy range undergoes & collision, it may be
captured; it may cause fission, with the subsequent release of several
other neutrons; it may be scattered—elastically if the scattering nucleus
is left in its initial state, or inelastically if that nucleus is left in an excited
state. In the last case, the energy of excitation is later released in one
of a number of forms, as will be seen presently (§ 1.2.3).

The rest mass of a neutron, expressed in energy units, is about 10* MeV,
i.e. well above our energy range, so that relativistic effects may be
neglected in examining the results of collisions. On the other hand, the
molecular binding energies are of the order of a fow eV and the energies
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of thermal motion are even less, 80 that these effects can also be neglected
except at the lower end of the range, and we may assume that

(i) the atomic nuclei are initially at rest;
(ii) they recoil freely after a collision.

In the case of fission, these assumptions can clearly always be applied,
regardless of the energy of the neutron which causes the fission. -In-
elastic scattering, as we shall see later, can be undergone only by
neutrons sufficiently energetic for assumptions (i) and (ii) to be satisfied
in any event. With elastio scattering, however, cases may arise where
those assumptions are not strictly correct.

Neutrons whose energy is high enough to justify the use of assumptions
(i) and (ii) in considering their scattering are called non-thermal or fust
neutrons. (The term fast is, however, sometimes reserved for neutrons
in the MeV energy region.) Neutrons whose energy is not high enough to
justify the use of (i) and (ii) are called thermal neutrons.t

1.2.2. Elastic scattering

We consider first the most frequent result of a collision, na.mely elastio
scattering, and restrict ourselves for the moment to non-thermal
neutrons. In an elastic collision, the atomic nucleus is left after the
oolligion in its initial state, that is, the ground state. The energy of the
neutron in the centre-of-gravity system} is therefore unaltered, and we
have only to examine the angular distribution of the soattered neutrons.
Thus, if w, say, is the final direction of the neutron in the C system,
g(w, E)dw is the probability that for a neutron of energy £ this direction
will lie within dw about w, and @ is the scattering angle (i.e. the angle
between the initial and final directions of the neutron in the C system),
we have only to examine the function§

g(w, B) = (1/4m){1+3g,(E)Py(c0s®)+5gy( E)By( cos®)+..}, (1.1)
where P, B, etc., are Legendre polynomials.
A simple qualitative estimate of the magnitudes of the various g,(X)

1 It may be more consistent to restrict the term thermal to those neutrons which are
i{n or near thermal equilibrium with the surrounding medium, and to introduce an
. intermediate energy region called. epithermal, where assumptions (i) and (ii) are no
longer ltnctly applicable, but thermal equilibrium has not yet been reached. However,
this region is small compared with the non-thermal region and contains many fewer
neutrons than the thermal region. It can therefore usually be safely disregarded.

{1 We shall refer to the centre-of-gravity system as the O system and to the laboratory
system as the L system.

$ To take g(w, E) as depending only on ©, as far as direction is concerned, presupposss
that we are dealing with unpolarized neutrons and that the atomic nuclei are randomly
oriented. This will be the case in all applications of neutron transport theory.
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in (1.1) can be obtained as follows. According to quantum mechanics, it
is impoesible to say exactly where the neutron is at a given moment; the
measure of the uncertainty in its position for each energy is given by its
de Broglie wavelength. If this is greater than the nuclear radius, i.e, if

E < 10/M} (1.2)

(where E is the neutron energy in MeV and M is the mass number of the
nucleus), it is impoesible to give an account of how the collision happened.
(In classical language, it is impossible to say at what angle the neutron
hit the nucleus.) In this case, all directions for the scattered neutron will
be equally likely in the C system, i.e. all gnl(E) for n = 1, 2, eto., will be
negligible, v

Similarly, if the de Broglie wavelength of the neutron is less than the
nuclear radius but more than half the nuclear radius, i.e. if

10/ M} < B < 40/ M3,

the best description of the geometrical conditions of the collision can
involve only one parameter. It is readily seen that this implies that all
but the first two terms in (1.1) will be negligible. That is, g,(E) cannot be
neglected, but g,(E) can be neglected for n > 2. In general, gn(E) can
be expected to be negligible if

E < n2.10/M?, C(L2)

If the theory of elastic scattering is rigorously worked out, it is found
that there are in fact two kinds of elastio scattering, potential scattering
and resonance scattering. The estimate (1.2’)is valid for potential scatter-
ing but not for resonance scattering. However, elastic resonance scatter-
ing is usually unimportant, so that (1.2') may safely be used. k

On applying these estimates to the heaviest nuclei, we see that in this
case elastic scattering should be approximately igotropic in the C system
up to about 250 KeV. Beyond this energy, the elastic scattering can no -
longer be regarded as isotropic, but up to about 1 MeV it is safe to regard
it as linear in the cosine of the scattering angle, and so on. For lighter
nuclei, the limite in question will be correspondingly higher.

Thus, for the elastic scattering of non-thermal neutrons of energies
not greater than a few MeV, the scattering law in the C system is always
given by a polynomial of comparatively low order in the cosine of the
scattering angle. The situation regarding the elastic scattering of
thermal neutrons is much more involved, and we shall not examine it
for the time being; see §§ 4.4 and 20.4.3.
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1.2.3. Inelastic scattering ,

We next consider inelastic scattering. In this case the nucleus is Jeft
after the collision in an excited state. The excitation energy is supplied
by the kinetic energy of the colliding neutron, and is eventually released
—usually in the form of a y-ray, but sometimes by means of some other
proocess, such as the emission of a proton, of an a-particle, or of a neutron.
The last case is referred to as an (n, 2n) reaction, since in the end we have
two freely migrating neutrons instead of one.

For highly symmetrical and fairly light nuclei (such as carbon or
oxygen), the energy difference between the ground state and the lowest
excited state of the nuclous is of the order of a fow MoV ; for hoavier or
lees symmetrical nuclei it is less, but even for the heaviest nuclei it is,
with s few exceptions, of the order of 40 KeV. Further, if s neutron has
fust enough energy to make an inelastic scattering energetically possible,

the probability of this event is still zero, and it can become appreciable
only for energies well above the threshold value. Finally, for any one
excited state, the probability that the nucleus will be left in that state is
usually small. Hence, for the majority of nuclei, inelastic scattering
becomes really important only when the neutron is so energetic that the
nucleus can be left in any of a large number of alternative excited states.

These remarks show that, for the lighter nuclei, inelastic scattering can
be neglected altogether in the energy range with which we are concerned ;
in the middle of the periodic table (mass numbers say 50 to 200), inelastio
soattering may have to be taken into account for a few exoceptional nuclei
towards the top of our energy range; for the heaviest nuclei inelastic
scattering becomes a general occurrence towards the top of the energy
range.

The angular distribution of inelastically scattered neutrons is usually
assumed to be igotropic. This assumption is not striotly correct; if we
consider inelastic scattering which leaves the nucleus in a particular
excited state, the angular distribution will depend upon the nucleus and
upon the state in which it is left. However, if the neutron is energetio
enough and the nucleus is heavy enough, so that the latter may be left
in any of a large number of excited states, we shall really be interested in
the mean angular distribution, averaged over all excited states in a
given range of excitation energies. While the angular distributions
corresponding to individual excited states may be anisotropio, the
deviations from isotropy will usually almost cancel on taking the mean,
#0 that the mean angular distribution will usually be nearly isotropic.

On the other hand, if the original energy of the neutron is just sufficient
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to make appreciable the probability of inelastic scattering by the given
nuoleus, then after the collision the neutron will be so slow that in the
subsequent elastio collisions it will be scattered isotropically (see § 1.2.2).
In this case, the scattering law in the inelastic collision is unlikely to
affect noticeably the general neutron distribution. Thus the only case
where the assumption of isotropic inelastic scattering is likely to be
inadequate for our purposes is that where only a few excited levels are
available, yet the neutron emerges from the collision with sufficient
energy to be anisotropically scattered in subsequent elastic collisions.
Such situations, if they are possible at all, are too rare to be of interest.

One further point should be noticed with respect to inelastic scattering.
Sinoce, in our energy range, this process can ocour only with fairly heavy
nuclei, and since the energy expended on nuclear excitation is always
large compared with that expended on nuclear recoil, the difference
between the C' and L systems may always be disregarded in dealing
with inelastic scattering. In particular, the scattering may be treated as
isotropio in the L system. This may be shown as follows: if the nucleus
is heavy, isotropy of scattering in the C system is nearly equivalent to
isotropy in the L system, unless the velocity of the scattered neutron is
comparable with, or less than, that of the centre of gravity of the system
neutron-nucleus. In this case, however, the neutron energy in the C
system after the collision is of the order of 1/M? compared with its
energy before the collision, where M is the mass number of the nucleus.
That is to say, the relative excess of available energy over the energy
needed for inelastic scattering is of the order of 1/M32, which (e.g.) is
about 4 X 10-2 for oxygen. For such low excess energies, the probability
of inelastic scattering is negligible. If more than one excited level is
available, the same argument can be applied to each resulting energy
level of the nucleus separately.

The same argument can also be applied to the case of the (n,2n)
reaction, which is of importance only in beryllium at high energies. The
angular distribution may again be assumed isotropic.

1.2.4. Fission

We finally consider fission. When fission is brought about by a
neutron, the fissile nucleus normally first absorbs the neutron, and this
brings the nucleus into a highly excited state, so that it enters a state of
violent and, at first, very irregular motion. The energy of this motion is
gradually concentrated into one particular mode of vibration, namely
periodio elongation and contraction of the nucleus, and this finally
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results in fission, Thus fission is a comparatively slow process on the
nuclear time-scale, though it is practically instantaneous on most time-
scales. It is obvious that, during the period in which the nuclear matter
is in irregular motion, before the energy is concentrated in a partioular
mode of vibration, all trace is lost of the direction in which the neutron
originally entered the nucleus; that is, all directions are equally likely in
the C system for the secondary neutrons emitted after fission. Further,

2 3
Energy in MeV
Fia. 1.

since fission occurs only in the heaviest nuclei, whose mass is over 200
times that of the neutron, and since (if the original neutron energy was
in the range of interest to us) the secondary neutrons will have energies
at least comparable with that of the original neutron, the mass of the
fissile nucleus may be taken as infinite to a close approximation. That is,
the C and L systems may be identified. Thus we can say that:

AU directions of the secondary meutrons emitted in fission are equally
likely in the laboratory system of coordinates.

There are certain cases of resonance fission where the above description
of the fission process is not strictly applicable, and so the angular distribu-
tion is not necessarily isotropic. However, it is usually treated as iso-
tropic; this assumption may be justified in the same general manner as
was done for inelastic scattering.

The energy spectrum of neutrons emitted in fission has been measured
by experiment. It is shown schematically in Fig. 1.

It is seen from this graph that the mean energy of fission neutrons is of
the order of a few MeV, and that the energies of the fastest and slowest
neutrons emitted in an appreciable amount differ by a factor of ~ 10.
On the other hand, the neutron energy varies over the range in which



8 THE PHYSICAL PROPERTIES OF NEUTRONS I§2

we are interested by a factor of ~ 108, Hence, though the spread of
the fission spectrum is appreciable on the linear energy scale, it may
frequently be neglected on the togarithmic energy scale.

1.2.5. Prompt and delayed neutrons

In order to be able to deal with time-dependent, as well as stationary,
problems it is necessary to examine possible delays in the emission of
secondary neutrons. It has been mentioned that fission, elastic scattering,
and inelastic scattering are Practically instantaneous on any but the
nuclear time-scale. While this is strictly true for both kinds of scattering,
for fission the situation is more involved. The fission itself may be
regarded as instantaneous, but at least a certain proportion of the fission
neutrons emerge from the fission fragments when the fission is com-
plsted. Inthe great majority of cases, this process can still be regarded as
instantaneous. There are, however, & amall number of cagses where the
last of the fission neutrons cannot be released before a B-ray has been
emitted. The time-scale for S-emission is much longer than that for
neutron emission, and so the time delay before the neutron is emitted
may well be significant. Since the fission fragment is charged, it can
travel only a negligible distance in space during this time compared
with the distances travelled by neutrons. The delayed neutrons may
therefore be regarded as emitted from the same point in space as the
prompt neutrons, and this justifies the assumption (F) of § 1.1. The
energy spectrum of the delayed neutrons may also be expected to differ
from that of prompt neutrons; it will involve rather lower energies.

l‘.3. The mean free path, the cross-section, the mean number of
secondaries, etc.

1.3.1. Definitions and notations

We now introduce certain definitions which are in constant use in
dealing with phenomena of neutron transport. According to assumption
(E) of § 1.1, for a neutron travelling with a given spoed through a given-
medium, the probability of a collision per unit path length is a constant.
The reciprocal of this probability is known as the total mean free path, or
briefly as the mean free path, and is usually denoted by l,,,, or I simply.
To indicate that it may depend on the speed v, i.e. on the energy F of the
neutron, we shall sometimes write it as liot(v), Uv), Iy (E), or [(E). The
probability itself, referred to in assumption (E), is accordingly known as
the inverse total mean free path, or the inverse mean JSree path simply, and
is sometimes denoted by oy, o, aot(V), ote.
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It is obvious from the argument which led us to assumption (E) that,
a8 the density of the medium through which the neutrons travel increasges,
the inverse moan free path will increase proportionately. Further, the
contribution of the various kinds of atom to the inverse mean free path
will be additive. Thus we may write

Yoy, = atge, = ; N;otot,00 (1.3)

where X, is the number of atoms of the ith kind per unit volume, and the
Otot,¢ 870 certain coefficients appertaining to the various kinds of atom,
and are known as the total cross-sections. The argument which led to (1.3)
suggests that each of these total cross-sections depends on the energy of
the neutron and on the properties of the nucleus to which it refers, but
not on the number of that kind of nucleus Per unit volume or on the
presence or absence of other kinds of nucleus. This is in fact the case,
provided that the neutron energy is large enough compared with the
energies of molecular binding, so that the recoil of the nucleus is inde-
pendent of how the atom was bound before the collision. If, however, the
neutron energy is comparable with, or smaller than, the energy of mole-
cular binding, the result of the collision may depend on how the atom,
whose nucleus is hit, was bound before the collision. In this case, by
the laws of quantum mechanics, the probability of the collision, that is
the cross-section, will also depend on the nature of the molecular binding,
and so may be affected by the Presence or absence of other material.
When a neutron undergoes a collision, the result may be its capture, or
scattering, or a fission accompanied by the release of several new neutrons.
Thus the number of neutrons is not conserved, and it will be convenient
to introduce the mean number of secondaries per collision, denoted by c.
If the medium through which the neutron travels is ‘pure’, i.e. contains
only one kind of nucleus, and if for this kind of nucleus we denote the
probabilities of scattering, capture, and fission by .

%oOts OOty ANA  opfoy, (1.4)

respectively, then the mean number of secondaries per collision will

clearly be ¢ = (0,+voy)/oyy,

where v is the mean number of secondaries per fission. In a medium con-
taining several kinds of nucleus, the mean number of secondaries per

collision will be
¢ = ; Nioys+v, 0/.4]/ ; N ort00 (1.6)

where v,, 0,,4/0tet,0 €1c., are the values of », AL fog' the sth kind of



10 THE PHYBICAL PROPERTIES OF NEUTRONS L§3

nucleus, and N; and o, ; have been defined in connexion with (1.3). The
formula (1.5) follows from the facts that the probability for a collision

to be with a nucleus of the jth kind is N, o, , / 3. N, 041, ¢» While the mean
. i

number of secondaries in such a collision is (a,;+v; 075)[0ters. The
numerator in (1.5) is called the mean number of secondaries per unit path,
and is denoted by B.

All the quantities which appear in these formulae may depend on the
energy of the neutron. However, it is generally considered that the
mean number of secondaries per fission, v, is practically independent of
energy up to a few MeV, that is, in tho energy range with which we shall
be concerned.

The use of the notation (1.4) for the probabilities of various results of
the collision is equivalent to representing the total cross-section Oot 88
the sum of three terms:

Otot = 0,;+0,+-0y, (1.6)
which are called the scattering cross-section, the capture cross-section,
and the fission cross-section respectively. The scattering cross-section is
sometimes divided into the elastic cross-section and the snelastic scattering
cross-section (the shorter term inelastic cross-section is avoided, since it
is often understood to include capture and fission as well as inelastio

scattering): 0y = oy, (1.6")

The concepte of the scattering mean free path, the capture mean Jree
path, eto., are also often used; they are defined, analogously to (1.3), by

l/ia = oy == ; N, 1l == a, == ; Nyo., ete. (1-3’,
Formulae (1.6) and (1.6’) then imply that
Yho, = 1l +1[l4+1/1; 11, = 1/ly+1/L,. (L7)

1.3.2. General features of the energy dependence of cross-sections

The dependence of the various cross-sections defined above on energy
has been determined experimentally, and curves showing this depen-
dence may be found, for instance, in (26). We shall not reproduce these
data, but we shall now discuss some typical features of the curves,
derived partly from experiment-and partly from the theory of nuclear
physics. '

We first consider the capture cross-sections. A nucleus of mass number
M can capture a neutron if such capture results in a possible excited -
state of the isotope of mass number M+-1. Each of these excited states
is associated with a particular energy, though these energy levels aro
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somewhat broadened owing to the finite lifetime of the excited states.
Breit and Wigner (6) have investigated the effect of this broadening on
the cross-section, and have shown that, if only one excited state of the
isotope of mass number M - 1is available, then the capture cross-section
for the nucleus of mass number M is given by

1 A
o B) = o sy (1.8)
where Z is the energy of the neutron and 4, E,, and T depend on M but
noton K. The curve showing the variation of this function has a peak at
E = E,, known as the capture resonance; K, is called the resonance energy
and I' the width of the resonance. If more than one excited state of the
isotope of mass number M +1 is available.but these states are widely
spaced, then the capture cross-section can be approximately represented
by the superposition of terms of the form (1.8), one for each state; the
quantity 4, however, in this case is a slowly varying function of E. If
the excited states available are not widely spaced, the expresaion
becomes more complicated. For heavy nuclei and very fast neutrons,
the excited states of the isotope of mass number M +1 become quite
dense, and the resonance character of the capture cross-section curve is
altogether lost.

The formula (1.8) and its extensions just described refer to capture by
an isolated nucleus, and the energy is referred to the ¢ system. This
means that it is applicable only to neutrons whose energy is greater
than the molecular binding energy. However, taking (1.8) as it stands,
we see that, when F is sufficiently small (depending on the value of I'),
o,(E) behaves as 1/VE, that is, as 1/v. For some nuclei this behaviour is
masked by the thermal and molecular-binding effects; for others it is
discernible in the non-thermal region, while for boron it continues up to
remarkably high energies. \

We now consider elastic scattering. As was mentioned in §1.2.2, this
consists of two parts, the potential scattering, for which the cross-section
is largely independent of energy, and the resonance scattering, for which
the cross-section is given by a formula which differs from the type (1.8)
only by the absence of the factor 1/vE. In the resonances, the resonance
scattering is usually just comparable with the potential scattering,
while outside the resonances it is negligible in comparison. Thus, if the
resonances concerned are fairly narrow, it is often possible to neglect
resonance scattering altogether.

For other processes, the cross-section curves are largely similar to
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those described above. For threshold Processes, however, i.e. those which
are energetically impossible for £ < some E,, the cross-section is zero
for B < E,, and rises slowly from zero for greater energies, finally taking
on the character of the curves discussed above. The curves for the total
caroes-section are obtained by superposing those for the individual
processes, and are therefore particularly liable to be irregular. Figs.
2a and 2b show the variation of the total cross-section with energy for
indium and for hydrogen in paraffin over certain ranges. The cross-
sections in these graphs are given in barns (1barn = 10-*cm?),
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The peak of the indium curve at £ ~ 144 eV is a capture resonance
of thb type represented by (1.8). The hydrogen curve has no such peak,
i.e. within the energy range shown the proton has no sharp resonances for
neutron processes. The rise of this curve below 1 6V is connected with
the effeot of the chemical binding, and this part of the curve depends to
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oross-section is remarkably constant from about 2 eV to about 500 KeV.

1.4. Preview of the main problems of neutron transport theory

We here conclude our summary of the physical properties of the
neutron. Before beginning the mathematical treatment of neutron
transport and migration, however, we shall give a short qualitative
Preview of the problems for whose solution neutron transport theory is
required. _

Considering the variation in time of the total number of neutrons, n,
in a system, we see that

Production by independent sources - production by fission and
(n, 2n) reaction = capture-;-escape from the system--on/ét, (1.9)
where on/or, if positive, is the increase per unit time in the neutron
Population of the system; if negative, it is the decrease per unit time,
taken with a negative sign. ‘Production by fission’ is understood to
mean the excess of the number of neutrons released in fission over the
number absorbed in causing fission.

Such independent sources as cosmic-ray neutrons are always present
in a system, but usually they are negligible compared with the artificial
sources present or the production by fission, Thus, if artificial sources
are absent, the left side of (1.9) reduces to production by fission.

Let us now imagine the linear dimensions of the system increased in
some ratio a, the chemical composition and density remaining un-
changed. The production by fission will be approximately proportional
to the volume ocoupied by fissile material, and so will change by a factor
a@*. Capture will also vary as a?, and since it ig necessarily smaller than
the production it will represent a constant fraction of the latter. The
escape of neutrons from the system, however, will be approximately
proportional to the surface area, and so will increase by a faotor a®, Thus

(1.9) gives onfot o W[AaP—Bat], . (1.10)
where the factor » is introduced because production by fission, capture,
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and escape are all proportional to the existing neutron population. 4
and B are approximately constant. The formula (1.10) shows at once
that there should be a value of ¢, a, say, such that for ¢ < a,, én/dt is
negative, and in the absence of independent sources the neutron density
will decay exponentially (in time-dependent problems the decay may be
only approximately exponential, since 4 and B may themselves be
functions of the time, for instance if the fractions of the neutron popula-
tionin different parts of the system vary with time)., Fora > a,, however,
on /ot is positive, and the neutron population will increase exponentially
(or approximately so). If @ = a,, the system is said to be critical, and
if a is & characteristic linear dimension a, is called the critical value of
that dimension. The name arises since fora > a, the neutron population
increases indefinitely, and unless the system varies with time the results
will eventually be catastrophic.

The determination of the critical size is the most important problem of
neutron transport theory. Occasgionally one has also to deal with time-
dependent problems and those where the independent neutron sources
have to be taken into account.

In what follows, we shall always keep in mind the critical-size problem
and the problem of the neutron distribution due to independent sources.
As regards time-dependent problems, however, we shall derive the
fundamental equations in a form applicable to both stationary and non-
stationary problems, and we shall show (in Chapter III) how any time-
dependent problem may be reduced to a stationary one; thereafter, we
shall confine ourselves to stationary problems alone. A more detailed
treatment of time-dependent problems is outside the scope of the work.



II

THE MATHEMATICAL FORMULATION OF THE
LAWS OF NEUTRON MIGRATION

2.1. The form of the transport equation :
WE now turn to the mathematiocal formulation of the laws of neutron
migration. The six assumptions (A) to (F) of § 1.1 allow us to construct
the basic equation governing the diffusion and migration of neutrons.
We define the following symbols:
t = time;
r = the position vector of a neutron;
v = 98, its velocity vector, v being the spood, that is, the magnitude
of the velocity, and £ a unit vector in the direction of motion;
NdVdvdQ = N(r, v, t)dV dvdQ, the probable number of neutrons at
time £in the volume element dV around the point r, ‘belonging
to dvdQ’ (i.e. travelling with speed between v and v+dvin a
direction lying within a solid angle dQ around the direction
);
8dVdvdQdt = S(r, v, t)dV dvdQdt, the probable number of neutrons
belonging to dvdQ emitted during the time ¢ to ¢+d¢ in the
volume element dV by the independent neutron sources.

(By independent sources we here mean sources whose existence and
strength do not depend on the neutron population of the system. Such
sources include spontaneous fission, natural radioactivity, and particle
accelerators used to generate neutrons. These independent sources will
sometimes be referred to as sources simply.)

(W' - vQ; t')dvdQdt’, the probable number of neutrons belonging
to dvdQ2 which result from a collision undergone by a neutron
with velocity v'Q’, and which emerge during a time ¢’ to
t'+dt’ after the collision.

We now consider a packet of neutrons specified by the values of v
and [r+-tQ], at times close to ¢ = 0. As t increases by dt, the probable
number of neutrons in the packet will decrease on account of capture,
and on account, of scattering out of the packet; it will increase on account,
of contributions from the independent sources and on account of
scattering into the packet. The net increase, by definition, is

(dN/(dt) dV dvdQdt. (2.1)



‘16 THE LAWS OF NEUTRON MIGRATION I, §1

The decrease due to capture and scattering out of the packet will be
given directly by the probable number of neutrons undergoing collision
during the time d¢. This is seen as follows: a scattering collision alters
either the speed or the direction of motion of the neutron, otherwise no
collision can be said to have taken place; in a fission collision, on the other
hand, the probability that any resulting neutron will have the same
direction and speed as the original neutron is of the second order of small
quantities. The decrease during the time dt is given by (E) of § 1.1 (seo

also § 1.3.1) as {1/l 0)}N AV dvdQ v de, 2.2)
where vdt is the distance travelled by the neutron in the time dt.

The increase due to scattering into the packet arises from collisions
of other neutrons in dV. It is found as follows: the expression corre-
sponding to (2.2) for all other speeds and directions at the time (¢—?') is
multiplied by the probable number of neutrons, resulting from each
collision, which emerge with a delay between ¢’ and ¢'4-dt’ and belong to
dvdQ; this product is then integrated over all speeds and all directions
of the initial neutron and over all values)of the delay time. The result is

dVy dvdQ dt J‘ ”' J‘ {v' [l (V)N (r, v, t—2')ep [ (V'S — v&2; t') di'do'd QY.

(2.3)
The contribution from the independent sources is given, by definition,
by 8dV dvdQt.
We also notice that

dN|[dt = oN[ot+vQ2.grad N,
where the dot denotes the scalar product and the gradient is taken with
respeoct to the position coordinates. Collecting these results, cancelling

the differentials, and transferring the decrease term to the left side, we
have finally

%v+v9.gtadN+ 2l

Liot(v)
s [ [[ ¥eweti—tasve > @i dar+s. @
biot(v')
This is the so-called transport equation or Boltzmann equation, which
forms the basis of the entire theory of neutron transport.
In stationary problems, the quantity ¢, f (v'Q’ - vQ; #’) will enter this
equation only in the form

[cef 0 > o@; v) dt, (2.5)

[
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and it is convenient to have a simple notation for this integral. If (2.5)
is integrated over all v and © we obtain the mean number of secondaries
per collision, which we have previously called ¢(v’) (§ 1.3.1). We shall
therefore write the integral (2.6)asc(v') f (v Q' - vR), where f (v'Q' — v82)
is normalized so that

f f [f0'R > 0@) dod =1, (2.6)

and f(v'Q' - vQ) dvdQ may be described as the probability that a

neutron, entering a collision with velocity v'Q’, will belong to dvdQQ after
the collision,

Using this notation, the Boltzmann equation for & stationary problem
is written ‘ :
vQ.grad N+oN/l, . (v)

- .[ vel)dy f N(r,v'R)f ('R > vR) d+8. (2.4')
Lt (V')
2.2. Discussion of the form of the function ¢, f(’Q’ - vQ )
Before the equation (2.4) can be used, the form of the function
& f (V'R > vQ; t') must be specified. This may be done by expressing
mathematically the conclusions of § 1.2. Let [¢,f(v'Q’ — v; t')],be the
value which the function ¢, f (v'2’ — vQ; ') would have if every oollision
resulted in fission, and let a similar notation be adopted for elastic and
inelastic scattering. Since scattering is always instantaneous and the
number of neutrons in scattering is conserved, we have

[erf R > 0 t)], = [F ('R > o)), (), |
and a similar expression for elastic scattering; 3(#') is Dirac’s delta
funotion and { f (v'Q’ -» vR)],, is defined similarly to e, f (v'S2’ -» vQ; '),
Thus '

1 ! 4 . — __]:-_ , , > oy
o) 1 O > o) = o R > o2 4]t

+

S(t') Te 4 S(t,) Ue 4 ’
T O > o)t 2 Iy ) )
where, according to the notation of § 1.3, l,,(v")/1(2’) is the probability
that a collision of a neutron of speed v" will result in fission, and similarly
for elastic and inelastic scattering. The contribution from elastio
scattering is represented as the sum of terms arising from various kinds
of nucleus; 3 is the mass number of the ith kind of nucleus and J,,, is
the corresponding mean free path for elastic acattering,

350690 o
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Let »(t’) be the mean number of secondaries emitted in fission with a
delay time not greater than ¢' (so that »(0) is the number of prompt
neutrons and »(c0) equals v of § 1.3), and let Fy(v,t') be the number of
neutrons emitted with speed v and delay #', so normalized that

J' Ffv,t')dv = 1.

0
Then, since fission is regarded as isotropic in the L system (see § 1.2.4),
’ 1 t' ’ ’

[erf R > oQ; 1)), = G[‘%—,—)I}(v, £)-+ OB )F o, 0)]. (2.8)
where the normalization factor 1/4r is introduced so that (2.8) gives
dv(t')/d¢’ on integration over all v and . For stationary problems, where
(2.4’) holds, (2.8) can be replaced by the simpler form

[e()f(rR — Q)] = (v/4m)Fy(v), (2.8%)

obtained by integrating (2.8) over all #.
Inelastio scattering is also regarded as isotropic in the L system (see
§ 1.2.3), so that analogously to (2.8') we have for stationary problems

[ >o@), = LE0 > v), (2.9)

where F (v — v) is the number of neutrons with initial speed ¢’ and final
speed v.

In the case of elastic scattering, the L and C systems cannot always
be identified, and the difference between them should be allowed for in
calculating the elastic scattering contribution to (2.7). In doing this, we
shall limit ourselves to non-thermal neutrons, since the elastic scattering
of thermal neutrons has not yet been discussed; for simplicity we shall
deal only with the case of isotropic scattering in the C system, that is
when (1.2) is satisfied, since for the more general case where more than
one term of (1.1) must be retained the results are too complex to quote;
and for brevity we shall omit the suffix { which denotes the kind of nucleus
involved.

Under these assumptions, the molecular binding can be neglected,
and the problem reduces to one of two bodies, the neutron and the
nucleus, of which the latter can be taken as initially at rest. Momentum
is conserved, and so is kinetic energy, because in an elastic collision the
nucleus is left in the ground state. These conservation conditions can
be written v'E= v’—}-Mu’}

(2.10)
V' = v4+Mu
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where v’ = v'Q’ is the velocity of the neutron before the ocollision,
v == vQ s its velocity after the collision, u is the velocity of the recoiling
nucleus, and M is the ratio of the nuclear mass to the neutron mass.
Eliminating u we have

v =" |v—v|} M, (2.11)
that is, oo-¥ +1)”;;(,M —10* (2.12)

Thus, if all collisions resulted in elastic scattering by nuclei of mass M,
we should have

[F ('R > v9)] 0 = s(sz.sz'.. (M ‘*’1’”'2;(,” 1) ') J(0, ),
(2.13)

where f(v,v') is a function of » and v’ only.
The equation (2.11) may alternatively be written

v? = 02— |Vo—Vg Y M = v'2—[vF—2vu, v} cos O+ v§ )/ M, (2.14)

where v;; and v, are the initial and final velocities of the neutron in the
C system, vy = |Vg|, vo = |V¢|, and © is the angle between v}, and v,,
sometimes called the scattering angle. Rewriting the conservation equa-
tions (2.10) in the C system, we have

vg = Vg = Mv'[(M+1),
and hence (2.14) becomes

°M
@I+

That is, for elastio scattering of fast neutrons, the final energy in the L
system is a linear function of the cosine of the scattering angle,
Hitherto the analysis has been general. We now restrict ourselves to
the case where (1.2) is satisfied, i.e. elastic scattering is isotropic in
the C system. If w specifies the direction in the C system, then
= |d¢ dcos®|, ¢ being the azimuthal angle, so that, if all values of
w are equally probable, it follows that all values of cos® are equally
probable. Then, from (2.15), we see that the probability of any permis-
sible value of v, which is f(», ') in (2.13), is proportional to dv*/dv, that is,
to v. From (2.15) we also see that the permissible values of v lie in the

rnge M- D[A ) <v <0,
#0 that outside this range f(v,v’) is zero, The proportionality factor in

= v”[l-—- (1— cos@)] (2.15)
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J (v, v') is found from (2.6), and on substituting the resulting f(v, v') into
(2.13) we find

f (v »v‘!)]u
(M+1)wg , (M) — (M —1) -1, .
{MM" (99' o0’ ') lfM-i-l SUSY,
0 otherwise.
(2.16)

Two features of this expression are to be noted. Firstly, for any given M,
it takes the form
[f'R > v®)]ya = (1)) xa functxon of v/v’ and .9’ only.
(2.16')
Seoondly, on integrating (2.16) over all v, and recalling that

d(x—zo) = [dy/da),.., 3y (x)—y(z,)],
we have

, 1 [{—14-(2.Q)}H+Q.Q
I[f(”nl"”ﬂ)]euld”_ M[{ ar= (1+(5)2}g')2}§ ] :

(2.17)
Using (2.17), it is seen that, a8 M — o0, the expression (2.16) becomes
[0SR > o)), = 7-14;8(11—-9)'). (2.18)

which corresponds to scattering that is isotropic and without energy loss
in the L system.,

If the anisotropy of scattering in the C system is not negligible, i.e.
further terms in (1.1) have to be taken into account, the corresponding
J(v,¢’) in (2.13) can be worked out similarly.

Finally, substituting (2.8), (2.9), and (2.16) or (2.18) (or their appro-
priate modifications) into (2.7) gives the function ¢.f(v'Q’ > vQ; ¢')
appearing in (2.4).

2.3. The boundary conditions

The equation (2.4) is an integro-differential equation, and to make the
problem of its solution determinate it is necessary to specify boundary
conditions. These, in fact, follow at once from the physical interpreta-

tion of N{r,v%,t), and we shall limit ourselves at present to showing
how they are formulated in some illustrative cases.
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2.3.1. The interface between two media .

If two media are in direct contact, that is without any other matter
interposed between them, then any packet of neutrons characterized by
the vectors ¥Q and r-+tQ will contain exactly the same number of
neutrons when it enters one medium as when it left the other. This can
be expressed mathematically thus:

N(r4 RQ, v, t+ R/v) is a continuous function of R for r+ RQ at
the interface. (2.19)

If, however, there is a third medium interposed, then the effects of
crossing it may have to be taken into account, and then the condition
(2.19) must be modified.

It is to be noticed that the condition (2.19) places a condition only on

what happens as the interface is crossed following the direction of the
neutron packet. That is,

N(r+RQ, v&, t--RJv)

isstipulated to be continuousin R onlyif @ = Q'. Though continuity will
also usually be present evenif Q = ', this is not stipulated, and to do so
might in some cases result in the problem being over-determined.

4 2.3.2. The free surface of a medium

The term free surface is used in neutron transport theory to denote a
surface or part of one on which no neutrons fall from outside. For
instance, if an isolated system has a convex (or, more generally, non-re-
entrant) surface, this will be a free surface. (By a non-re-entrant surface
is meant one such that a straight line emerging from it cannot meet it
again.) If, however, the system has a re-entrant surface, those parts of
the surface that receive neutrons emerging from other parts of the
surface are not considered as a free surface. This definition implies that

N(r,vQ,¢) = 0 for all Q entering the system and r on the surface.
(2.20)

2.3.3. The condition at infinity

No physical system can extend to infinity, and the concept of such a
system is a mathematical idealization. The condition at infinity will
therefore always depend on the actual situation which is to be approxi-
. mated. It should be noticed, however, that a remote neutron source can
‘justifiably be regarded as ‘at infinity’ only if the number of neutrons
coming from this source directly (i.e. without collision) to the region



22 THE LAWS OF NEUTRON MIGRATION IL,§3

under consideration is negligibly small. Accordingly, the condition at
infinity should always imply that the number of neutrons coming directly
Jrom infinity is zero.

2.3.4. The initial conditions

In dealing with a time-dependent problem it is necessary to specify

not only boundary conditions in space, but also initial conditions. If
delayed neutrons are neglected, i.e. if (2.8) reduces to

[erf (V'Y — v 1)), = (v/4m)Fy(v)8(t"),
then it is sufficient to specify N(r,v,?) at the initial time ¢ = ¢, say.
If, however, delayed neutrons are to be taken into account, then the
presence of the integral

j N, v, t—t)Efo,t) )

o di (2.21)

0

makes it necessary to give N forall ¢ < ¢,. This necessity can be avoided,
but only by introducing a more general treatment, which lies outside the
scope of this book. This would consist in the use of functions R;, say,
which characterize the distribution of fission fragments capable of
emitting delayed neutrons. The equation (2.4) is supplemented by
equations governing the R;, and the integral (2.21) is expressed in terms
of the R,.

2.4. The integral equation

The integro-differential equation (2.4), th.h the boundary conditions
(2.19) and (2.20) and appropriate initial conditions, can easily be trans-
formed into an integral equation. Inasmuch as a time-dependent prob-
lem can always be reduced to a stationary one (see below), we shall show
this transformation for stationary problems, i.e. starting from equation
(2.4).

We shall first carry out the derivation of the integral equation for the
simple case when (i) the system consists of a single non-re-entrant homo-
geneous body; (ii) the sources, if any, are isotropic, i.e.

S(r,vQ) = S(r,v); (2.22)
(iii) f (v'¥’ > vQ) is assumed to be independent of Q' and £, i.e. to have
the form f(vlgl - ‘vﬂ) =f(v' - v)/4", (2.23)

where the factor 1/4r is inserted so that the normalization of f (v' - v) by

f S oa>v)dv=1 (2.24)
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is consistent with (2.8). The last assumption implies that all g,(E)

{n > 1)in (1.1) are neglected, and that for heavy nuclei (2.18) is replaced
by (2.18) or by

[f(v'ﬁ' - ‘UQ)] 1S [(M+ 1)’”/811le2 lf ﬂ:i- ' < v < v’,
0 otherwise,
. (2.25)
say, while light nuclei are assumed to be altogether absent.

In dealing with this case, it will be convenient to introduce the notation
n(r,v) = f J‘ N(r,vQ) dQ. (2.26)

In order to understand the significance of the factors in the kernel of
the integral equation, we shall firat derive it from first principles and
then establish its equivalence to the Boltzmann equation.

From (2.28) and the definition of N it follows that n(r,v)dVdv re-
presents the probable number of neutrons, regardless of direction,
present at a given time in the volume dV about r and having speeds
between v and v+4-dv. This number should be equal to the integral over
the entire volume of the system of the contributions to the density arising
from other volume elements dV’. The contribution from the volume

element d¥’ about r’ is, however, given by the product of the following
four factors:

(1) the probable number of neutrons with speed between v and v--dv
produced in dV’ per unit time (where ‘production’ includes those
resulting from scattering);

(2) the probability that a neutron produced in dV’ will have a duectxon
that passes through dV;

(3) the probability that it will escape collision between dV’ and dV;

(4) the length of time during which the neutron can have been pro-
duced in dV’ 8o as to be in dV at the time when n(r,v)dVdy is
estimated.

The first factor, from the same arguments as were used to derive (2.4),
is
dV'dv J' n(r’, v'){v’c(v')/lm(v’)} f(' - v)dv'+4n8(r’',v) dV'dy, (2.27)

where the factor 4= in the second term arises because S(r’,v)dV'dy ie
the source strength per unit solid angle; cf. (2.22) and the definition of
Sin§2.1.
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The second factor is found by expressing dV in the form ds.dA4, where
dcinmeuuredinthedimctionﬁomd?’todl’, and d4 lies in a plane
perpendicular to this direction. Then, since by (2.22) and (2.23) all
directions are equally probable for a neutron produced in dV’, the
probability that it will pass through dV is given by the solid angle
subtended at dV’ by dA4, that is

‘ dA [4n|r—r'|2, (2.28)

The third factor follows from assumption (E) of § 1.1, provided that
the path from dV’ to dV lies entirely within the medium (which is
necessarily true for non-re-entrant media) and the medium is homo-
geneous. This factor is

oxp[— |r—r'|fl,y(v)). (2.29)

The fourth factor is clearly equal to the time spent by the neutron in
dV, and this is dsfv, where dV — ds.d4. Combining these results and
cancelling the differentials, we have

% { f w(r', ) 2 £ s 0y d dmsr, v)}. (2.30)
leot (V') :
It is sometimes convenient to rewrite (2.30) as follows: v’ is replaced
by v and v by ¢', and the equation is multiplied by
v'e(v) f(v' > v)/4ml o (v')
and integrated over all ¢/, putting

Q(r,v) = Zl;f dv’;:;—:g—% n(r, v') f (v’ > v)4-S(r, v). (2.31)

Equation (2.30) then becomes
- 1 av’ , c(v')
=g [ [ el [ o2«

X QE', )1 (¢ > vexp| """] +8(r,0). (2.32)

lio(v')

‘The quantity Q(r,v) is sometimes called the emission density of
neutrons; it is the number of neutrons either scattered into or generated
in dodV per unit time.

2.5. The equivalence of the Boltzmann and integral equations
We shall now show the equivalence of the Boltzmann and integral

equations by deriving the latter, not from first principles, but from the

Boltzmann equation (2.4') with the boundary condition (2.20).
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We first notice that, in the case ooxisidered in§2.4,1i.e. when (2.22) and
(2.23) hold, the right side of (2.4) is identicel with (2.31), so that in this
cage the Boltzmann equation can be rewritten

oR2.grad N(r, v8)-+uN(r, v@) /Loy (v) = Q(r, v). (2.33)

The first step is to express N (r,vR2) in terms of Q(r,v). Since Q.grad
is simply the derivative taken along the direction of 2, the equation
(2.33), r being replaced by r— RQ, can be rewritten

d 1 1
— T N(r—RQ,09) + Ve~ RR0®) = ~Q(r—RR,0). (2.34)

If Qr—RQ,v) is supposed known, (2.34) can easily be solved for
N(r—RQ,vQ):

N(r—RQ,vQ) = N(r— R,Q, vQ)eR-Rilloto) .

Ry
+1-1, f Qr—R'Q, v)e®-EVuav) dR’,  (2,35)
R

We now put R = 0 and notice that, if the line r— R, (where r and
are fixed and R, is variable) outs the surface of the system for some
R, > 0, then, for this value of R,, N(r— R,Q,vQ) vanishes by (2.20).
In this case (2.35) becomes

Ry
N(r,v®) =% f Qr— R'Q, v)e-Ehatd g R, (2.36)
[1]

where R, has the value specified above. Since Q(r’,v) is clearly zero in
the vacuum outside the system (where the mean free path is infinite),
the upper limit of integration in (2.36) can be replaced by infinity.
Changing the dummy variable we have

Nr,@) = 1 f Q(r— B2, v)e-Rhato) G R, (2.37)
I

If, on the other hand, the medium extends to infinity and r— R, Q does
not reach the surface for any positive R,, then instead of (2.20) the
condition at infinity must be used (see § 2.3.3). This condition implies

that :
N(r—R ~Ralal®) = (),
lim N(r—R,Q, Qe

since otherwise the number of neutrons coming directly from infinity

would not be zero. Taking R, infinite, the formuls (2.36) again reduces
to (2.37).
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If we now mtegra.te (2.37) over all , put r— RQ = r’ and notice that QL)
dRAQ = dV’|R* = dV’[|r—r1’|2, we find - 4,01 | T'Vlv lf

n(r, v) f J-f lrdI:,l,Q(r’,v)e"'-"M". (2.38)

Combining this with (2.31) we have (2.30), as is to be expected, on
eliminating Q(r,v), or (2.32) on eliminating n(r, v).

2.6. The case of re-entrant bodies and inhomogeneous media

In the case considered in § 2.4 it was simpler to derive the integral
equation from first principles; in more general cases, however, it is easier
to derive it from the Boltzmann equation, following the procedure of
§ 2.5. In the present section we shall still retain the assumptions (2.22)
and (2.23), i.e. the independent sources and the scattering law are
regarded as isotropic in the L system. The scattering medium, however,
need no longer be a single homogeneous non-re-entrant body, and when
this restriction has been removed the mean free path and the number
of secondaries may depend on the position as well as on the velocity.
This is the case even when the system is single and homogeneous but
re-entrant, since the Boltzmann equation must then be applied not only
to the points inside the body, but to those outside the body lying on any
straight line joining two points inside the body. At such points the mean
free path is infinite, i.e. different from that in the medium itself.

If now the mean free path and number of secondaries per collision
depend on position, then (2.31) and (2.34) are replaced by

Qro) = - f o LA °§f,'” e, o)l > o)+ S(e,0)  (231)
and
N(r— RS, vQ)

d

— %Q(r——Rﬂ, v), (2.3¢)
and the solution of (2.34) is

Nir—RQ,vQ) = N(r—E,®, vsz)exp[ f T“(F%]"'
tot\* ]

1 4 ‘R’ ’ ’
+ ;;[ Qr—R Q,v)exp[ J M] dR'. (2.35)

The last expression can be written in a simpler form using the notation
-
dR’

r—RSZ,r—R'S'Z = —— |,
7l ) PRAEES )

(2.39)
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This quantity is calledt the optical distance between r— R and r— R'Q2.
It may be described as the geometrical distance between the points,

_multiplied by the inverse mean fi ath averaged over the line segment
ﬁ—ﬁ-&f' o

between them. 'f‘t"""’(

Expressing the integrals in the exponents in (2.35’) in terms of optical
distance, and proceeding then as in § 2.5, we find instead of (2.38):

a(r,v) = f f f lr‘”'r' 7 QL' D)eée, (2.38")

Combining this with (2.31’) and eliminating either Q(r,v) or n(r,v), we
obtain tho intogml equation for n(r, v} or Q(r,v) respectively:

% { f (', v') _"_"(”_:'_"Qf,,(v'_»u) dv'+4nS(r’,v)}. (2.30")

liot(r, v")

dV’ o’ c(r,v’) , —rete,
o) = - [ [ [ o5 [ o S e P
v

2.7. The integral equation in the general case

If the assumption (2.23) is not satisfied, for instance if the system
contains light nuclei such as hydrogen, the Boltzmann equation can still
be reduced to the integral equation as before, but with the difference that
the right side of (2.4') (i.e. what we have called the neutron emission
density) will depend on &. In the most general case, therefore, the
natural unknown in the integral equation is not the quantity n(r, v), but
rather N(r,vQ) itself. The equation will then take the form

N(r, Q) = j f f av’ f j f v dQN(r', v QKT , v - 1,v8)+

+independent source terms; (2.40)

but the actual form of the kernel K(r’,v'Q’ - r, v82) will not concern us
for the time being, We shall also leave for the moment the cases (where
f ('Y — v) is a low-order polynomial in ’.82) for which (2.40) can be
reduced to an equation for n(r,v). We can also introduce, similarly to
(2.31), the neutron emission angular distribution Q(r,vS2), and derive for
it an equation similar to (2.40).

1 From the use of a similar quantity in optica.



III

STATIONARY AND TIME-DEPENDENT PROBLEMS,
THE ADJOINT EQUATION

3.1. Stationary problems and critical-size problems

WE shall be concerned chiefly with stationary problems. These will be
divided into two major classes. In one, the geometrical dimensions and
chemical composition of the system are given and it is required to
determine the distribution of neutrons due to given sources. In the other,
it is required to find the geometrical dimension and/or chemical composi-
tion for which a stationary distribution of neutrons is possible in the
absence of independent sources. The latter case leads to an eigenvalue
problem with a homogfheous equation.

The chemical composition of a system is charaoterized by the values
of the various N,, the number of atoms of the ith kind per unit volume,
in different parts of the system. The various inverse mean free paths are
linear functions of the N, (see § 1.3.1), and the coefficients and the
kernel in equation (2.4) are linear functions of the inverse mean free paths.
Thus we have a homogeneous equation linear with respect to the para-
meter of chemical composition, and the general properties of such
equations may be utilized; we shall mention some of these later.

In some cases, certain changes in the chemical composition will result
in replacing the homogeneous equation corresponding to (2.4) by

vQ.grad N+oN[l, . (v) = y X [right side of (2.4') without §],
(3.1)

where y expresses the degree of change in the chemical composition. In
general this will not be so, but (3.1) may still be considered as & mathe-
matical device, and we shall refer to its eigenvalues y,, and eigenfunctions
N, , as eigenvalues and eigenfunctions under varying chemical composition.

It is & well-known property of homogeneous equations that only one
of the possible eigenfunctions can be everywhere positive. This will be
proved in § 3.3. Since on physical grounds N(r, v§2) cannot be negative,t
it follows that only one eigenvalue of (3.1) will be of physical interest.

t It should be remarked that, although N(r, v&) iteelf cannot be negative, it may
appear 8o in two cases: (i) if the analytical expression is extrapolated beyond the region
where it is valid into one where it has no physical significance, (ii) if N is expressed as
the sum of two or more terms, in which case the separate terms may become negative,

though their sum is always positive. In such cases we may speak of ‘a negative number
of neutrons.’
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This is called the critical value, as explainedin§ 1.4, If, on the other hand,
we vary the size of the system instead of its chemical composition, the

smallest size for which (3.1) with y = 1 has a solution is called the
critical size, -

3.2, Time-dependent problems and their reduction to stationary

problems

Time-dependent problems can always be at least formally reduced to
stationary ones, assuming of course that the properties of the medium
do not change with time. The most general method is to use a Laplace
transform. T'o determine the solution of (2.4) fort > 0, we take N(r, vQ, 1)
as zero for ¢ < 0 (delayed neutrons from fissions ocourring before ¢ = 0
are included in the source term §), and perform a Laplace transformation
with respect to ¢. Using (2.7) and (2.8) we find:

vQ.grad N+ [A+ v ]N

lyot(v)

- f f f Vv dQ'N(r, S, ) [F A2, ")"’"‘).;.l. (i,){ f(v’n'-»vn)},]+:§,

dml (v')
(3.2)
where ® )
N = N(r,02,1) = &[ N(r, v, t)e-¥ ds, (8.3)
8 = N(r, v, 0)+ f S(r, v, t)e-M dt,
5(A) = A f W(t')eN de’, (3.4)
0
and F (v, ))5(0) = v(0)F}(v, 0)+ fI}(v,. t’)it’d%'ze"‘"dt'
0

(so that F,(v,)) satisfles the normalization condition
«
[ Frio, 3y dv = 1).
é

For simplicity, the terms due to elastic and inelastic scattering have been
combined.

Equation (3.2) is of exactly the same form as (2.4’), and can be regarded
a8 the equation governing the stationary neutron distribution in a
certain fictitious medium. In this fictitious medium, the inverse total
mean free path is increased by /v, compared with its value in the actual
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medium; the mean number of secondaries per fission is changed from
¥(co) to i(A), with the appropriate change in the fission spectrum, while
all other constants are left unaltered. Since the scattering and fission
mean free paths remain unchanged, the increase in the inverse total
mean free path means an increase in the inverse capture mean free path
of Afv, and this term is therefore sometimes referred to as fictitious
capture. Further, since v(t’') increases monotonically with ', it follows
from (3.4) that #(A) for A > 0 decreases monotonically with increasing A,
and j(00) = ¥(0), #(0) = v(c0). That is, the number of secondaries per
fission in the fictitious medium is rather less than in the actual medium,
and decreases with increasing A.

If 8 vanishes, the equation again becomes homogeneous, i.e. an eigen-
value problem, whose parameter is now A. If also the system does not
extend to infinity, then, by a well-known property of eigenvalue problems
for finite domains, the eigenvalues A, will form a discrete sot. It follows
from our discussion of (3.2) that the eigenvalues A, cannot be arbitrarily
large, real, and positive. It can also be shown (though the proof is
difficult) that the real parts of complex cigenvalues (if any oxist) must bo
smaller than the largest real eigenvalue. Arranging the eigenvalues in
order of decreasing real part and calling them Ay, A, A;, ete., we thus
see that the most general solution of the homogeneous equation corre-
sponding to (3.2) is

-3
N(r,vQ,)) = 3 anBia(r, vSA—1,), (3.5)

where the a,, are some constants, and hence the solution of equation (2.4)
in this case is ,,
N(r,vQ,t) = ZoanM_n(r, vQ)eM, (3.6)
P
If any of the eigenvalues is degenerate, i.e. corresponds to more than one
eigenfunction, then we include more than one term in (3.5) correspond-
ingly. It may be shown that A, cannot be degenerate, except in very
unusual circumstances.t
Since, however, A, is algebraically greater than any other A, it follows
that for sufficiently large ¢t all terms in (3.6) after the first will be negligibly
small compared with the first term, and the solution (3.6) reduces to

N(r,v82,1) o a, N, o(r, vs2)eM. (3.7)
Accordingly, our aim is usually to determine only A, and N, rather than
the complete set of eigenvalues and eigenfunctions. Since N(r,vQ,?)

t 8uch circumstanoes would arise, for example, in the case of a system divided by a
black slab, where the parts of the system on each side of the slab are isolated from each
other and no neutrons can pass between them.
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must be non-negative everywhere, the same is true of N o(r,v2), from
(3.7). This can also be proved without appeal to physical considerations,
by showing that, if N,o(r,vR) changes sign, there must be an eigen-
function corresponding to an eigenvalue larger than A,. This contra-
dicts the supposition that X, is the largest eigenvalue, '

The value of Ay is called the time constant of the system. Ifitisnegative,
then (3.7) shows that the number of the neutrons in the system will
decrease exponentially with time; if it is positive, this number will
increase exponentially. Since A, = 0 is the largest value for which this
increase does not take place, it is called the critical value. Systems for
which A, is negative are called subcritical, and those for which it is positive
are called supercritical. The effects of the sources, i.e. the solution of
the inhomogencous equation, will normally be of interest only for
suberitical systems. ’

This also shows (cf. § 3.1) that only the eigenvalue Ao 18 of interest in
stationary problems. For, if the dimensions or the chemical composi-
tion have boen chosen so that a stationary solution is possible but this
solution changos sign as r and v& vary, then in the time-dependent caso
it is one of the eigenvalues other than A, which vanishes, and A, i8 positive.
Thus, though a stationary distribution is possible, so also is an exponen-
tially increasing ome, and it is the latter which would be encountered if
such a system were constructed.

3.3. The adjoint equation and an orthogonality relation

We now turn to the inhomogeneous equation, i.e. to the case where
8 in (3.2) does not vanish. It is often found advantageous to expand the
solution of an inhomogeneous equation in terms of the eigenfunctions
of the corresponding homogeneous equation, and we shall employ this
approach in the present case. We shall, however, neglect the delayed
neutrons, i.e. F(v,A)5(}) is assumed independent of A, and the equation
(3.2) simplifies to

v82.grad N+[A4{v/l,(v)}]N
= f f f {v'e(v Moo} (V'R > vQ)N(r, v, A) dv'dQ’ + 3, (3.8)

where f(v'Q’ > vQ) is given by the same expression as in (2.4').
The equation (3.8) is now linear in the parameter A; the corresponding
homogeneous equation is

vQ.grad N+A+-{vfl,, (o)} )N
= f f f {v'c(v" )l (V' )} f 'S > vQ)N(r, v, A) dv'dQ. (3.8")
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Lot Ay, My, Ay, eto., be as before the eigenvalues of (3.8")and N, N,,, eto.,

the corresponding eigenfunctions. We consider simultaneously with (3.8)
and (3.8') the equation

—osz.gradN'+[A+ d ]N?

Lot (v)

= {oe(0)/learl0)} [[ [ £ R > vQ)N¥r, v, ) dvdey, (3.9)
with the free surface boundary condition

Nt(r,vQ,)) =0 forallQ leaving the system and r on the surface
(3.10)
(that is, in the directions opposite to those appearing in (2.20); the boun-
dary conditions at an interface, however, are still given by (2.19)).
The equation (3.9) is called the adjoint equation to (3.8'). Weshall give
later the physical interpretation of its solution in certain cases, though

we shall not discuss the difficult problem of the general significance of
that solution.

Let A}, AL, eto., be the eigenvalueé of (3.9), and let NJ,, N{,, etc., be

the corresponding eigenfunctions. The following orthogonality relation
can then easily be proved:

A=A J' J’ J’ av | J’ [ dvdQ N (r, vR)N}(r,02) = 0,  (3.11)

where the volume integral is extended over some arbitrary convex body
large enough to include the entire system.t

$ From (3.11) follows the result of § 3.1 that at most one eigenfunction can be every-
where positive. The proof of this, howsver, is very long, and we shall do no more than
aketoh its outlines,

The first step is to show that, if N(r, v€2, 0) is non-negative and the delayed neutrons
are neglected, then N(r, vf2, ¢) is non-negative for all ¢ > 0. This is proved by writing
out the time-dependent form (2.40) of (2.40), with N (r, v€2, 0) in the source term, and
solving the resulting Volterra equation in & unique Neumann series, whose sum is non-
negative because the kernel and free term of the equation are non-negative. From this
result we deduoe (i) that, since the third iterated kernel of (2.40’) is bounded, N(r, v£2, t)
cannot increase faster than ¢X* with A’ depending on the kernel only, and therefore there
is a largest A,, which we call A, (this was proved physically in § 3.2); (ii) that the eigen-
funotion corresponding to A, is non-negative, since {3.6) for large ¢ becomes (3.7), whose
left side is non-negative, as shown above.

The second step in the proof is to show that there is & largest eigenvalue of the adjoint
equation, and that the corresponding eigenfunction is non-negative. This is proved by
the same means as the first step and its corollaries, considering (instead of N(r, v&2, ¢))
the solution N*%(r,v£2,¢) of the Boltzmann equation with f(v'Q’— vS) replaced by
J(—v&-» —v’SY’) and the same boundary conditions. Since NE(r, vQ) = N (1, —v&2)
and A = AJ, the second step is proved. Using this result, we deduce from (3.11) and the
first step above that A} = ), and that N, ¢ cannot be non-negative unlesa A; = A, and
similarly that N{; cannot be non-negative unless A' = ),
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The relation (3.11) can be proved in the usual manner, that is, by multi-
Plying the equation defining N (r,vS2) by N},(r, vQ), subtraoting the
same thing with i and j interchanged, and integrating over all r, v, and £.
On the right side we obtain the difference of two expressions which differ
only in the order of integration and in the naming of the variables. Since,
however, the integration is over a finite region, the order of integration
may be interchanged, and so the right side is zero. On the left side we
obtain two terms, the left side of (3.11) and the integral

[[] » dvag [[[ aviny @ .grad N+ N Q.grad N}, (3.12)
The inner integral in (3.12) clearly reduces to

f _[ 8(R, T)N,(r, vQ)N] ((r, vR) d.S, (3.13)

where § is the surface of the region of integration and 4(S2, r) is some
function of Q and r. If at the point r on S the vector § is pointing
inwards, then N, (r, vQ) vanishes by (2.20); if outwards, then N, 14(r, vQ)
vanishes by (3.10). In either case the product N, N* vanishes, so that
(3.13) and consequently (3.12) also vanish. This proves (3.11).

It follows from this that, if the N, (r,v) form a complete set, then all
the eigenvalues A of (3.9) are among those of (3.8"), the A; conversely,
if the N{(r,vR) form a complete set, then all the X are among the ).
For, if the N, form a compléte set, and there is a A}, say, which is not
among the A,, then the corresponding eigenfunction NJ, would be, by
(3.11), orthogonal to every function of a complete set, and therefore
would be identically zero, which is contrary to definition.

It has not yet been proved that the N,; or the N§, form a complete set.
It is, however, natural to expect that this is so, by analogy with other
problems of mathematical physics, and we shall assume this result
henceforward. It then follows that the eigenvalues of (3.9) are identical
with those of (3.8'). This will be confirmed in cases where the NJ, have
a physical interpretation. See also Appendix A,

3.4. The eigenfunction expansion of the solution of the inhomo-
geneous equation
We now proceed to the solution of the inhomogeneous time-dependent
equation (2.4), which, since delayed neutrons are neglected, will have the
same form as (2.4'), but with the additional term 8N /at. This form of the
equation weshall call (2.4"). Assuming that theset N, (r, vS2)is complete,
the solution can be represented in the form

N(r,1Q,t) = T 4,(ON,.(r,vQ), (314

3060899 D
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where N, , are the eigenfunctions of (3.8'), and A,,(t) are some functions
of the time. Using the orthogonality relation (3.11), and assuming that
N« and N}, are 8o normalized that for ¢ = j the integral in (3.11) is
unity, we find from (3.14)

A, = J’ f J' av f j J’ dvdQ N} (r,vQ)N(r, o, t). (3.15).'

The equation (2.4") to be solved is now multiplied by N, 1 a(r,v2), and
from the product is subtracted the equation (3.9) defining N} a(r,v82),
multiplied by N(r,v&2,t). The difference is then integrated over all v,
£, and r. Using (3.15) and defining

8,(£) = J’ f [av f J’ f dvdQ N (r, v)S(r, v82, 1), (3.16)
we easily find dA,(t)fdt—A, A (1) = s,(t), - (3.17) .
all other terms vanishing as in the proof of (3.11); the equation (3.17)
can be solved immediately.

This procedure can, of course, be applied also to stationary problems.
We give an example, whose result will be of use later. Let there be a
subcritical system (A, < 0) and a monochromatic collimated point source
of unit strength, i.e, a source emitting neutrons of only one speed v, (say)

in only one direction £, (say), and situated at r, (say). The mathematical
expression of this source is

S(r, 182) = S(r—ro)3(v—v,)8(R—y), (3.18)

where §(r—rg) = 3(x—2z()5(y—y,)8(z—2,) is the three-dimensional
delta function, and §(2—£,) is the angular delta function; the coefficient
unity in (8.18) represents the unit strength of the source. Let the
resulting neutron distribution be N(r,,v,<, - r,vS2). Substituting
(3.18) into (3.16), we have :

8, = N].(ro, 1, R),
and then from (3.17) and (3.14) it follows that

N(r, vo8% > r,vQ) = g (—1/A)N{n(Fo, o RN, o(r, 02).  (3.19)

3.5. Another orthogonality relation

The analysis given above relating to equation (3.8') is also applicable to
(3.1). The adjoint equation is constructed as in § 3.3, and differs from
(3.9) only in that A is absent and the right side is multiplied by y. Itis
easily proved, as for (3.11), that the eigenfunctions N, .(r,vQ) of (3.1)



1L §s8 ANOTHER ORTHOGONALITY RELATION 35

and N}, (r, Q) of the adjoint equation satisfy the orthogonality relation
tri~yy) [[[ av [ [[ N x,v0) x

X {06(0)lyoy(v)} dvdQ f f f [ (v > v'Q)NY (v, V) dv'dQ’ == 0.

(3.20)
Of course, since the variable parameter is now a different quantity, not
linearly depending on A, the eigenfunctions N, .(r,vQ) of (3.1) are not
the same as the N, (r,vR), so that (3.11) and (3.20) are not two sets
of orthogonality relations connecting the same set of functions, but
relate to two different sets of functions. We shall call (8.11) orthogonality
under variable time-constant and (3.20) orthogonality wnder variable com-
position, though tho latter term is not always justified (cf. § 3.1),

In stationary problems, tho solution of an inhomogeneous equation
can be oxpanded in torms of N, ,(r,vR) in the same way as was done
above using N, (r,v). In particular, if Nu(r,vR) and N}, (r,v) are
normalized so that the integral in (3.20) is unity for § = J» we easily
find, proceeding as in § 3.4,

N(ro: ”ogo ->r, vﬂ) = z (1/71.)N3,n(1'o» vogo)lvcm(r: '/9) (3.21)

It should be noted, however, that for purposes of practical computa-
tion there is usually no advantage in the use of eigenfunction expansions
in stationary problems, and the formulae (3.19) and (3.21) are quoted
only for their general interest.

The orthogonality relations (3.20) can easily be generalized. In
forming the homogeneous equation eorresponding to (2.4'), instead of
replacing ¢(v) by yc(v), we could have first represented c(v) in the form

e(v) = co(v)+¢4(v) (3.22)

and then replaced ¢,(v) by ye,(v), leaving c,(v) unaltered. The form of
the corresponding adjoint equation is obvious, and the corresponding
orthogonality relation is

=) [[[ aV [[[ Neotx,0@)x

X {06, (0) lyoy(0)} dvdQ J’ f f SR > v Q)N (r, v'R) dv'dQ’ = 0, (3.20)
to which we refer as orthogonality under variable composition. The actual
form and values of the y,, N, ,,and N}, will, of course, depend onhow we
divide c(v). If the chemical composition varies in only one medium, we
should put for this medium ¢,(v) = ¢(v), ¢4(v) = 0, and for all other
media ¢,(v) = 0, co(v) = ¢(v). The space integration in (3.20’) is then
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extended only over the volume occupied by the first medium. In what
follows, we shall usually refer to orthogonality under variable composi-
tion in the original form (3.20), but it must be remembered that all
conclusions are equally applicable to the more general relation (3.20%)

3.6. The adjoint integral equation

The relations (3.20) and (3.20") contain other factors in the integrand
besides N, ; and N} ;. This means that N L4i8 not identical with (although
closely related to) the solution of the integral equation adjoint to the
homogeneous form of (2.40). This adjoint equation is not, however,
generally of interest, because of the unwieldiness of (2.40).

If the scattering is isotropic in the L system, i.e. f(v'Q’ - vQ) has the
form (2.23), the integral equation (2.40) is replaced by a rather simpler
one obtained by combining (2.38') and (2.31’), and in this case the
adjoint equation and the connexion between its solution and the
Ni(r,vR) previously defined is also of interest.

The homogeneous integral equation under variable composition

(without dividing ¢(v)) which corresponds to the elimination of Q
between (2.38') and (2.31') is

Y av’ e e, v, ‘o
)= [ e [ o T omie e

and its adjoint equation is therefore

L dV’ d ! 7, ') ’ ’
w0 =L ||| 7o [ S eeones ome ) )
(3.24

To establish the relation between this n}(r,v) and Ni(r,vQ) defined
earlier, we consider the quantity

Ne(r, o) = 2 f nl(r-+ B, v)e-rdex+Ra) g R, (3.25)
0

It can easily be shown, as in deriving (2.35’), that this N*(r, vQ) satisfies
the equation

—vR2.grad N+(r, o)+ (r” SR = -En;(r, v).  (3.26)
Multiplying (3.25) by

Yy ¢(T, vy)

v Yr, "o)f'(v. >
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integrating over all v and Q, transforming the right side as in the deriva-
tion of (2.38’), and using (3.24), we obtain

v.l,(if'r;:;o) ffj évgdgfr(vo - )N*¥(r, 1) = ni(r, v,). (8.27)

Eliminating n} between (3.27) and (3.26), we see that N *(r, v82) satisfies
the same equation as N}(r,v®). It is also clear from the definition (3.25)
that N*(r,vQ) satisfies the same boundary conditions as Ni(r,vS).
With suitable normalization, we therefore have

N*(r,vQ) = Ni(r,vS2), (3.28)

and this establishes the connexion between the solution of the adjoint
integral equation and that of the adjoint integro-differential equation,
for the case of scattering isotropio in the L system.

In the present case, we see by the use of (3.27) that (3.20) reduces to

a=p) [[[ &V [ dv n,tr, vmi(r,0) = o. (3.20)
This could, of couise, have been derived directly from (3.23) and (3.24).

3.7. Some further remarks

The existence, for f(v'Q’ - v&2) independent of 2 and &', of an ortho-
gonality relation between n,(r,v) and n}(r,v) only [(3.29)] could have
been foreseen as follows. The kernel of equation (2.30) or (2.30') is
linear in ¢(v), whilst the parameter y was introduced into (3.1) as a
constant multiplier of ¢(v). Thus the integral equation for n,(r,v) is
linear in the parameter y, and it is a general property of integral equations
linear in the parameter that there is an orthogonality relation between
their eigenfunctions and those of the adjoint equation.

For eigenfunctions under variable time-constant, the situation is
different, since the equation (2.30) or (2.30°) is not linear in the inverse
total mean free path, and the parameter A enters (3.8’) as a constant added
t0 v[loy(v). There is no reason, therefore, for an orthogonality relation
to be expected, and in fact none can exist, as is shown by the following
simple argument (due to Wilson (55)).

Consider a time-dependent problem with no delayed neutrons and
no independent sources for ¢ > 0, and let the value of n(r, v, t)
(= [[ N(r,vR,1) dQ) be given at t = 0. Then, by (3.6), the expression
for n(r,v,t) when ¢ > 0 will be of the form

R, 0,8) = Y a n (T, v)isl, (3.30)
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1f there were an orthogonality relation between n,4(r,v) and nly(r,v)
only, then the coefficients a,, in (3.30) would be uniquely determined by
knowing a(r,v,t) at ¢ = 0. Thus the neutron density at any subsequent
time would be known. This is impossible; for, let there be two identical
systems, in one of which the neutron distribution at time t = 0 is

Ny(r, v, 0) = n(r, v, 0)5(Q— r/r),
and in the other is

Ny(r, v, 0) = n(r, v, 0)5(R+r/r),
where r =.|r|, and r = 0 is the centre of each system. Then at ¢ = 0,
n(r, v, ) is the same in each system, but in the first system all the neutrons
start by moving outwards, while in the second thoy all start by moving
inwards. Then the initial cscape of noutrons must be groater in the first
gystem, and so the values of n(r, v,1) for ¢ > 0 cannot be identical in tho
two systems. This completes the proof that no orthogonality relation
can exist between n,,(r,v) and nj(r,v).

In the discussion (§§3.3 and 3.4) of the time-dependent problem in the
presence of sources, delayed neutrons have been neglected. If this is no
longer permissible, then (cf. § 3.2) the Laplace transform of the corre-
sponding homogeneous integro-differential equation is no longer linear in
the parameter A. Consequently, the eigenfunctions of the adjoint equa-
tion constructed as in § 3.3 will not be orthogonal to those of the homo-
geneous form of (3.2). The procedure described above of developing the
solution of the time-dependent inhomogeneous equation in terms of
the eigenfunctions of the homogeneous equation is therefore no longer
applicable. However, it appears that the number of each kind of fission
fragment capable of emitting a delayed neutron is governed, as a function
of time, by a first-order differential equation; this is seen from § 1.2.5,
since the probability per unit time of B-ray emission is a constant for
a given kind of nucleus or nuclear fragment in a given state of excita-
tion. It follows that, if the more general approach described in§2.34is
adopted (namely, to supplement the neutron distribution equation by
those governing the distribution of fission fragments that emit delayed
neutrons), then the Laplace transformation with respect to time will
give a system of equations linear in the parameter. This system will have
orthogonality relations similar to (3.11), and hence the expansion of the
solution in terms of the eigenfunctions of the system of homogeneous
equations will be possible. This treatment lies beyond our scope, how-

ever, and in what follows we shall confine ourselves to stationary prob-
tems alone.



PART II

THE CONSTANT CROSS-SECTION
APPROXIMATION

1v

ONE-GROUP THEORY AND ITS RANGE OF
APPLICATION

4.1. The assumptions underlying one-group theory
Wz turn now to the methods of solution of the equations disocussed in
Part I. Each available method is based on some simplifying assumption.
Part IT is concerned with the solution of (2.4’) under the following
additional assumptions:
(i) the variation of the total mean free path [ (v) with energy it
neglected;
(ii) the relative probabilities of scattering, capture, and fission vary
with energy in such a way that the mean number of secondarie:
per collision ¢(v), given by equation (1.5), can be regarded a:
independent of energy;
(iii) the value of the integral

fAQ Q) = [ [ > v®) dv (4.1

can be regarded as independent of v’, the initial speed of tl«
neutron.

Integrating (2.4') over all v, using the above assumptions, and writin;

¥(r, Q) = J’ oN(r,vS) dv
(4.2
and 8(r,Q) = f S(r, vS) dv,

we obtain

Q.grady-+g/l = (c/l) J’ j Y(r, Q) f(Q - Q) dQ' +8(r,R). (4.3

This is the form of the transport equation in the constant cross-sectio:
approximation, or, a8 is it sometimes called, one-velocity-group theory o
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simply one-group theory. The latter term,t though generally adopted,
gives an incorrect idea of the range of applicability of the approximation,
which is better shown by our name.

It is to be noticed that, if (2.8"), (2.9), and (2.18) are integrated over
all v, we obtain respectively v/4, 1/4n, and (2.17), which are all inde-
pendent of v’. The assumptions (i) to (iii) therefore follow if the relevant
croes-gections are assumed independent of energy. Further, on inte-
grating over all energies, the only possible difference between elastic and
inelastic scattering is in the angular distributions of the neutrons after
collision. However, if M is large, i.e. the scattering is by a heavy nucleus,
(2.17) can be replaced by 1/4w, that is, the same value as for inelastic
scattering. If, on the other hand, M is small, inelastic scattering may be
neglected. Thus elastic and inelastic scattering need not be distinguished,
and the cross-sections which must be assumed constant are those for
fission, capture, and total scattering (elastic plus inelastic) for each kind
of nucleus present in the system. Though the chief attraction of the
constant, cross-section approximation is the simplicity of the transport
equation compared with the general case, there are many systems for
which the assumptions of this approximation are fairly well satisfied,
and for these it will be a reasonably realistic treatment.

No reference has yet been made to the case of anisotropic scattering
in the C system, i.e. when further terms of (1.1) have to be considered.
However, we have shown in § 1.2.2 that these terms have coefficients
ga(E) (n > 1) which depend strongly on the energy, and 8o it would be un-
reasonable to apply the constant cross-section approximation to this case.

The reduction of time-dependent problems to stationary ones involves
the introduction of a ‘fictitious capture’ varying as 1/v, and an alteration
in the number of secondaries per fission (see equation (3.2) and the dis-
cussion thereof). If the second change has a much greater effect than the
former, or if the spread of neutron energies in the system is very small,
the constant cross-section approximation may-be applicable, despite
the variation of the fictitious capture with energy. If the effect of the
introduction of fictitious capture is important, however, and if the spread
of neutron energies in the system is large, the variation of the fictitious
capture as 1/v may make the constant cross-section approximation im-
possible of application to the time-dependent equation or to its Laplace
transform (3.2), even when it can bo used for the corresponding stationary
problem,

t Due to the fact that the constant cross-section approximation is a particular case
of m-group theory, discussed in Chapter XIX.
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4.2. Terminology

Having indicated the chief limitations of the constant cross-section
approximation, we return to equation (4.3). If all the nuclei in the
medium are heavy (large M), then (2.17) can be approximately replaced
by 1/4x for all scattering collisions, and hence f(Q' — ) can be taken as
constant. By the normalization condition (2.6) we then have

(@ > Q) = 1/dm,

and the equation (4.3) becomes
Q.grady+y/l = (c/dnl) J’ J’ $(r, Q') dQ’ +s(r, Q). (4.4)

The case where this equation is applicable is called one-group theory
with scattering isotropic in the laboratory system, or simply one-group
theory with isotropic scattering.

It is seen from equation (4.4) that the quantity

p(r) = J’ f Y(r, Q) dQ = J’ f J‘ oN(r,vQ) dvdQ = f vn(r,v)dv  (4.5)

(which may be described physically as the track length per unit time per
unit volume) will play an important part in neutron transport theory. It
is generally called the meutron flur.t We also introduce two other
appellations, the neutron current

itr) = [[ pr. @) d2 = [[[ vaarv(r, o) avaq, (4.6)
and the neutron densityt
n(r) = f f J' N(r, v®) dvdQ. (4.7)

It is to be noticed that the term flux is here used in a different sense from
what is usual in physics, where it denotes a quantity analogous to (4.6).
The terminology here introduced is for the sake of convenience, since
‘track length per unit time per unit volume’ is too long, while ‘neutron
ourrent’ is an equally satisfactory name for (4.6).

The importance of the quantity (4.5) arises in practice in the following
way. Suppose that, in order to observe the neutron population at some
point, an ‘activation detector’ (i.e. a thin foil, say, of absorbing material)
is inserted. When the foil is withdrawn, the number of radioactive

t The term neuiron iraffic has lately been suggested to denote this quantity, but we
prefer to retain the established name.

1 It should be noticed that n(r) (with one argument) is not the same function as
»(r, v) (with two arguments), but equals j' n(r, v) dv.
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disintegrations of excited nuclei formed in the foil by neutron capture
is counted, and so the number of neutrons captured by the foil while in
the medium is found. The Boltzmann equation gives the number of
neutrons captured by the foil per unit time as

dVJ'J‘J'vN(rvSZ)ddQ

v
volume of fofl c,!ou( )

which is proportional to
J'”- e 1oV (r, vQ) dvdQ.

Thus, if the capture cross-section in the detector follows the 1/v law (seo
§ 1.3.2), the neutron density is measured by this method; but if this
cross-section is constant (as in the present theory), the detector will
meagure the neutron flux. In the case of collimated, i.e. unidirectional,
neutrons, the flux is the same as the current, and this is the origin of the
term flux in the neutron transport sense.

The neutron flux (i.e. (4.5)) is sometimes denoted by vn(r), where n(r)
is given by (4.7). In this case, however, v denotes the mean speed of the
neutrons at the point r, which is the ratio of (4.5) to (4.7).

The function y(r,R2) is called the angular distribution of the neutron
fluz, or simply the neutron angular distribution. The terms neutron-
energy flux, neutron-energy current, and neutron-energy density are also
sometimes used; they are defined similarly to (4.5), (4.6), and (4.7), with
N(r,v) replaced by mv2N(r, vQ2), where m is the neutron mass. Where
the constant cross-section approximation is invalid, the neutron collision

density is defined as
vN(r, vQ) dvdQ
.[ f f bot(v) ) (+.8)

4.3. Other applications of the constant cross-section approxima- .

tion

It has been shown in § 4.1 that, if the relevant cross-sections are all
independent of energy, and if it is desired to find only y/(r, Q), the angular
distribution of the neutron flux, rather than N(r, v) itself, the equation
(2.4') can be replaced by the simpler form (4.3). If fission and inelastic
scattering are absent and the cross-sections for capture and elastic
scattering are again independent of energy, then the same method can
be used to determine not only the neutron flux angular distribution
Y(r,82), but also such quantities as the angular distribution of noutron



Iv,53 OTHER APPLICATIONS 43

density and the angular distribution of neutron energy density, namely
the quantities

XalT, ) = j v N(r, vQ) dv. (4.9)
1]
For, if elastic scattering and capture are the only possible processes and

the cross-sections for these processes are constant, then on substituting
(2.7) and (2.16) into (2.4') we have

v8.grad N4 2N _ f J' J' N(r,v’Q’)szdv'dQ'+S,
Lot 7 lore
(4.10)

whereo f ('v/v’,SZ.SZ’, M) denotes v’ timos the right side of (2.18), Multiply-
ing (4.10) by v"-1, integrating ovor all v, and noting that

«©

f vty f (vjv',Q.Q', M) = v'» X a function of .9’ and M; only,
[

we clearly find an equation for x,(r, Q) which is of the same form as (4.3).
As n increascs, tho relative importance of the low-energy neutrons
decreases, and the lower parts of the neutron energy range may be
disregarded. Thus, with a monochromatic source and cross-sections
which vary slowly in the vicinity of the source energy, it may be possible
to apply the constant cross-section approximation to determine Xa(T, 82)
for sufficiently large n, even if the cross-section varies considerably below
the source energy.t It is sometimes possible to use this fact in investigat-
ing the biological effects of neutrons, which are approximately propor-
tional to the neutron-energy flux of fast neutrons, i.e. to xs(T, 82).

4.4. A note regarding thermal neutrons}

Hitherto the condition for the applicability of the constant cross-
section approximation has been the constancy of the relevant cross-
sections, whence the name; however, this theory is also applicable to an
entirely different situation. Suppose that soattering is isotropic in the
L system, while the energy changes in scattering are such that the

neutron energy spectrum is independent of the position and direction of
motion of the neutron; that is,

'R > vQ) = f(v' - v)/dm, ’(4.11)
and N(r,vQ) = (r,R2). F(v). (412)

t This remark is due to J. H. Tait.
{ The considerations given in this section are due to J. P. Elliott.
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Substituting these in (2.4') and integrating over all v, we obtain, since
by (2.6) [ f(v' +v)dv =1,

R.grady(r,Q). | vF(v) dv +¢(r,Q). vF(v) dv
! j bot(v)

@

_1 Noer [COWFW)dY
n ff Y(r, ') d '6’. —‘—7;(;7)——- <+ ! S(r, v82) dv.
This equation is identical with what (4.4) becomes when I and ¢ are
replaced by I* and c* defined as follows:

1 ( va(v) dv
= | vF()dv =
o]

lioe(v) ’

. R (4.13)
vF(v) dv - ve(v) F(v) dv

; lyor(v) J bot(v)

, from which I* and c* can be calculated, provided that F(v) and the
variation of the cross-sections with energy are already known.

The situation here envisaged should be approximately realized in the
case of thermal neutrons. For, if capture and escape from the system are
neglected (which would imply omitting the sources also in a stationary
problem), then the neutrons will be in strict thermal equilibrium with
the medium. In this case, it is known from the kinetic theory of gases
that, regardless of the scattering law and the variation of the mean free

path with energy, the neutron spectrum will be Maxwellian, i.e. it will -
be given by

c*

F(v) = constant X vle-me*/2kT (4.14)

(where m is the mass of the neutron, 7' the temperature of the medium,
and k Boltzmann’s constant), irrespective of the position or direction
of motion. If the absorption of neutrons and their escape from the
system are taken into account, then they will no longer be in strict
thermal equilibrium with the medium, and equation (4.14) may require
modification. However, if the absorption is large, the neutron population
of the thermal energy region will be small and the exact determination
of its distribution will be of little interest. If the absorption is small, on
the other hand, the correction required to (4.14) will not be great. The
escape of neutrons from the system can be regarded as a highly localized
capture. Hence, except in the immediate vicinity of the boundaries,
the effect of escape on the system will be like that of a weak absorber,
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i.e. the correction to (4.14) on this account will be small. Near the
boundaries the effect will be more important, and the actual magnitude
of the necessary corrections to (4.12) and (4.14) will depend chiefly on
the rate of approach to thermal equilibrium from a distribution in the
thermal energy range. Although no exact results are available, it is
hoped that (4.12) and (4.14) will be approximately applicable up to the
boundaries. In this case, and if (4.11) is justified, it follows that the
thermal neutrons can be treated by one-group theory, even when I(v) and
¢(v) vary appreciably with energy. Further, an exact knowledge of the
behaviour of f(v'Q’ -> vQ) for thermal neutrons is not needed, except
possibly in order to justify the use of (4.12) near the boundaries.

It is to be noticed that the effects which appear only in dealing with
thermal neutrons—namely, the molecular binding and the thermal
motion of the atomic nuclei—will both tend to make the scattering iso-
tropic in the L system. This follows since the thermal motion is random
and the effects of molecular binding can be expressed to a first approxima-
tion by ascribing to the nucleus a mass greater than its real mass; from
(2.17), this decreases the anisotropy in the L system. Thus, for thermal
neutrons, (4.11) should be valid for collisions with all nuclei except,
perhaps, protons and deuterons.

We here conclude our survey of the possibilities of application of the
constant cross-section approximation, and turn to the study of the
appropriate tra.hsport equation.,

4.5. The integral equation in the constant cross-section approxi-
mation

If the scattering is isotropic and the system consists of a single homo-
geneous non-re-entrant body (so that equation (2.30) holds), then, in the
constant cross-section approximation, multiplying (2.30) by v, integrat-
ing over all v, and using the notation (4.6) we have

p(r) == (c/4ml) H f p(r)e-I*=Filg V'’ [|p—1' |84
+ f f f 8(r)e=t=FRGY’[|r—r’|3, (4.15)

This equation could also have been obtained by starting with (4.4) and

proceeding agin § 2.5, If this were done, we should obtain for the angular
distribution

W(r, Q) = j [(Qi”l)p(r— RS)+s(r— Rsz)] eBIdR,  (4.16)
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This relation, in turn, could have been got from (2.37) by multiplying
by v, integrating over v, using the assumptions of the constant cross-

section approximation, and noticing that, for isotropic scattering and
isotropio sources,

[ Qtx,0) dv = (c/ambip(r)+o(r).

Also, substituting (4.16) into (4.6) and putting r— R = r’, we find

j(r) = f f f [4—:-r—lp(r')+s(r')] lrr_‘;'lae-lr-fwav'. (4.17)

If it is desired to work with the neutron emission density instead of the
flux, then we integrate (2.32) over all » and write

o(r) = [ Q(r,v) dv, (4.18)
obtaining

9(r) = (clén) [[[ aw)e-r-rW apjje—r'Pta(r). - (419)

Abandoning the assumption of a single homogeneous non-re-entrant
body, but retaining those of constant cross-sections and isotropic

scattering, makes it necessary to start with (2.30'). In that case (4.15)
is replaced by

plr) = ﬁ f J' f fl%p(r')e"‘""l—ri_%+ f f f 8(r')e O AV’ [|[r—r' 2,

(4.15")
which could also be derived from (4.4), while (4.19) becomes

_efr) ey OV )
ate) = ok J' f f ateee Lt st (4.19")
Formula (4.16) becomes

Ur,Q) = f [%p(r—Rﬂ)+s(r—Rﬂ)]e""‘-""m dR. (416)

If the anisotropy of scattering in the L system is not negligible, i.e. if the
constant cross-section Boltzmann equation has to be taken as (4.3)
instead of (4.4), then the neutron flux p(r) and the neutron emission
density g(r) must be replaced by the neutron flux angular distribution
Y(r,L2) and the neutron emission angular distribution g(r,S2). Starting
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from equation (4.3) and proceeding as in §§ 2.5 and 2.8, we obtain for
theso latter two quantities the integral equations :

(r,Q) _-—..f dR'e—*r(r,r-R"';)x
[}
% { f f ;((:—:'II%‘L("R'Q»R’)f(R' - Q) dQ’-I-s(r—R'.Q,SZ)}

(4.20)
and

q(r,R)
= {er)ir)} [ [ [ atr— R, Q )erve-R0Y (@ > Q) dR'AQ" +a(r, D).

Putting r—R'Q’ = r’, we can rewrite the last equation as

@ =3 [ [ oo (e~ o) el
‘ (4.21)

Equation (4.20) is, of course, the form of equation (2.40) in the constant
cross-section approximation.

4.6. The adjoint integro-differential equation and the optical
reciprocity theorem
The homogeneous equation under variable composition, corresponding
to (4.3), is obtained by simply omitting the free term and replacing ¢
by yc or, more generally, by ¢,+yc,, where y is a variable parameter
and ¢,+c; = ¢ (see (3.22)).1 This equation we call (4.3'). The adjoint
equation, similarly to (3.9), is

—Q.grad ¢+l = {(eotyer)/} [ [ Y1, ) f( @ > Q) 4. (4.22)

On comparing this equation with (4.3'), and recalling that f(Q2' - Q)
depends only on 2.2, so that f(R - Q') = f(Q - Q), we see that
y!(r,2) must be proportional to y(r, —). Thus, if J(r,Q) and Y!(r,Q)
are so normalized that for some particular r and £ ’

P (r,R) = §(r, —Q), (4.23)
then this relation will hold for every r and €. This at once gives the

physical interpretation of the adjoint equation for the constant cross-
section approximation, and confirms that in this case the eigenvalues of

1 If the system consists of one medium only, we need not, of course, introduce ¥ but
can treat ¢ itself as a variable parameter,
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the adjoint equation are the same as those of the original equation
(cf.§ 3.3), whether or not the eigenfunctions ¢, o(r, Q), ¥ ,(r, R), ete., form
a complete set. Ifthis is in fact the case, by the use of (4.23) the solution
of an inhomogeneous equation can be expanded in terms of the eigen-
functions of (4.3) (cf. § 3.5). In particular, for the case of a collimated
point source of unit strength, we find

Hru D> 1,2) = 3 (raWealto —RuMealrs @) (2:24)
(cf. equation (3.21)). From (4.24) there follows at once

(1o, 2y - 1,R) = (r, —Q > 1y, —K); (4.25)

that is, the number of neutrons at r travelling in the direction £ due to
a point source of unit strength at r, emitting in the direction £2, is equal
to the number of neutrons at r, travelling in the direction —£2, due to a
source of unit strength at r emitting in the direction —£2.

This result is called the optical reciprocity theorem.t It has been proved
above on the assumption that i, o, ., ete., form a complete set. Another
proof does not depend on completeness, but assumes instead that the
actual value of ¢ is smaller than any of the eigenvalues ¢y, ¢,, etc. It may
run as follows:

Let the integral equations for (r,, £, - r, ) and for

P(r, —R > 1y, —S)
be written in the form (4.20). Iftheactual value of ¢ is smaller than any
of the eigenvalues of the corresponding homogeneous equation, these -
integral equations may be solved by means of Neumann expansions.}
Using the facts that f(Q' - Q) = f(Q - ') and +(r,r’) = 7(r’,r), it is
easy to show that the corresponding terms of the two Neumann series
are equal, and hence (4.25) follows.

The assumption that ¢ is smaller than any of the eigenvalues should
always be satisfied in practice, for (as we have seen in § 3.2) a stationary
solution is otherwise not a practical (though perhaps a theoretical)
possibility in the presence of sources.

1 The use of the word optical arises from the previous existence of & similar theorem
in optics.

{ This may be seen as follows. For finite systems, Fredholm’s theory (52, pp. 215-17)
is applicable, and shows that the solution as a function of ¢ has singularities only at ¢
equal to some ¢;. The solution as & power series in o therefore converges for |¢| < min|cy|,
and this series is the Neumann series (52, pp. 221-2).

For infinite systems, the result as stated is valid only if there is no supply of neutrons
from infinity. In this case we can take a large finite system, establish the convergence
of the Neumann series as above, and pass to the limit as the system becomes infinite.
We shall discuss this more closely in Chapter XV. If there are sources at infinity, they
should be replaced by sources at a finite distance ; we then apply the optical reciprocity
theorem and again pass to the limit.
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The formula (4.25) can be integrated over some variable to give a more
particular form of the optical reciprocity theorem. Thus, integrating
over all 2 and £,, we obtain

p(Fy > T) = p(r = Iy); (4.26)

that is, the neutron flux at r due to an isotropic point source of unit
strength at r, is equal to the neutron flux at r, due to an isotropic point
source of unit strength at r.

4.7. The adjoint integral equation

In the last section we considered the adjoint integro-differential equa-
tion in the constant cross-section approximation with isotropioscattering,
We shall now consider the adjoint integral equation. If the homogeneous
equation corresponding to (4.16") is taken in the form

4 () av’
po(r) = Jff cofr’ )l?;'ycl(r po(r’ )e=Tir’s )ir—-r'|l’ (4.27)

then the adjoint integral equation is obviously

ol(r) = ;co(r)l('*;;'cx(l‘) J' f J' pl(r)ewm ll‘ l'l' (4.28)

On comparing these equations with the homogeneous equation corre-
sponding to (4.19’), we see that with suitable normalization their solu-
tions are related by

dnr _ _ co(D)fyeten(r)
»';“Qc,t(r ) = pl(r) = '9-—1(‘1_)—1—%.((1')- (4.29)

These relations will be utilized in Chapters XIV and XV,

We have not yet given the orthogonality relations between the
various p, ,(r). It would be rather laborious to derive these from (3.20’),
since that equation already involves integration over all . However, it
is also possible to start from the equations satisfied by i, ,.(r,£2) and
Pla(r,82), and proceed as in the derivation of (3.20°). This gives

=) [[[ @52 [[ vosr. 2 a0 [ [ 102> @t .20 ac = o.

Since the scattering is assumed isotropic in the L system, i.e.
J(R > ') = 1/4m, we can rewrite the above orthogonality relation, using
(4.23) and (4.5), as

vi—vy) fff av %‘((r—?pc.s(r)pu(r) = 0. (4.30)
B
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If we do not use (3.22), but take the homogeneous equation under
variable composition in its simplest form with co(r) = 0, ¢,(r) = ¢(r),
we can use (4.29) to rewrite (4.30) in the more convenient form

=y | [] aV pedriptsir) = o,
or, with the appropriate normalization,

J[] av pegiptsir) = 5, (431)
where 3, is the Kronecker symbol.

Note added in proof. The argument given in the second part of § 4.4
to justify the application of (4.13) to thermal neutrons is inexact, and
holds only under the further condition that the variation of lio(v) over
the peak of the Maxwellian distribution is small. If this condition is

not met, the result (4.14) will hold only for the neutron density spec-
trum n(r,v).
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EXACT SOLUTIONS FOR AN INFINITE MEDIUM
WITH ISOTROPIC SCATTERING

5.1. The case of an infinite source-free medium
WE now turn from the formulation of the equations governing the
migration of neutrons to their solution. For clarity we deal with the
simplest case first, namely the constant cross-section approximation
with isotropic scattering, and this will ocoupy us for several chapters.
The present chapter and the next are concerned with some cases where
the equation for the neutron distribution can be solved exactly.

The simplest possible problem is that of a homogeneous source-free
medium extending to infinity in all directions. For this, the equation

(4.15) becomes
o) = J J‘ J‘ p(r)e-e-run 2l Il‘ r']’ (5.1)

space

The solution of this integral equation can be reduced to that of a differen-
tial equation, and we shall do this by three alternative methods. -

5.1.1, First method

Since p(r) must be everywhere regular, p(r’) may be expanded in a
Taylor series about r, viz.

p(r’) = p(r)+[(=' —2)op|ox+(y' —y)op/dy+( —z)aplaz]H[ 4

(5 2)
If we assume this series to converge everywhere, it may be substituted
into (5.1) and the result integrated term by term. Since the resulting
expression must be independent of the choice of Cartesian coordinates,
it is invariant under rotation of the axes, and so can contain only the
differential operators V2, V4, V8, etc., where
V2 = 2%oat+0%[0y3 1008, V4 = (V2)2, ete.
Thus the result of substituting (56.2) into (5.1) should be of the form
p(r) = cp(r)-+A4, Vip(r)+ A, Vip(r)+...].

The coefficients A4,, 4,, eto., which appear in this expression are easily
found, giving [ o o1 eve - jevet. Jo(r). (5.3)
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If a solution of the differential equation

‘ V2p(r) = p(r)/L* (6.4)
is known which is regular throughout space, then clearly
‘ Va%p(r) = p(r)/L?»,

. and, substituting this into (5.3), it is seen that this p(r) will satisfy that
equation also, provided that L is chosen so that

18 15
1=c[1+§r’+gf‘+...],

L, L4l

: . 1
}. th&t 18, *E == ?llog‘L—-_l- (5.5)

Thus, if L satisfies (5.5), any solution of (5.4) regular throughout space
* will satisfy (5.1). The converse is shown by the second method.

5.1.2. Second method
We attempt to find the solution of (5.1) in the form

o) = 555 [ [ [ Foerwosar, (6.6)

© where p is the parameter of a three-dimensional Fourier transform, and
, dV, is the volume element in p-space. Since :

© 1
1 Y, rrstpe . 1 1 ooudy = L tan-
Z—;r_lffj T = ﬁfe-' drje “dp —plta.n ol (5.7)
[} -1 .
" (where dV; is the volume element in r-space, r = |r|, p = |p|, and the

. principal branch of the inverse tangent is taken), we have by the Fourier
transform inversion theorem :

and then by the convolution theorem, using (5.6), we obtain

1 ’ d‘{’ P\l 1 l -1, —1|
N N e
space

(5.8)
(The proof of the convolution theorem may be found, for instance, in

" Bochner (4), p. 189.) On comparing (5.8) with (5.6), we see that (5.1) will
be satisfied if F(p) is the solution of the equation

{l—(c/pl)ta.n“pl}l"'(p) = 0. (5.9)
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Since only the principal branch of the inverse tangent is involved, it is
easily shown that the equation

1—(¢/pl)tan-1pl = 0

has only two solutions, which in the notation of (6.6) are p = +i/L.
Thus the most general permissible solution of (5.9) is

F(p) = 3(p—i/L)G:(p)+-3(p+4/ L)Gy(p), (5.10)
where 8 is Dirac’s delta function and G,(p) and Gy(p) are any functions.

Substituting (5.10) into (5.6) and combining the contributions of the two
terms of (5.10), we obtain

plr) = | [ 6x)exsizar, (5.11)

where k is a unit vector in an arbitrary direction and G(k) is an arbitrary
function. Thus (5.11) is the most general solution of (5.1) obtainable by
this method. There exists, however, a general theorem (see Titchmarsh
(49), pp. 305-7), according to which the procedure used here gives every
solution of (5.1) which does not increase faster than e'” (where ' is any
constant greater than !), provided that the most general solution of (5.9)
is taken (as we have done). On the other hand, a solution which increases
faster than this will clearly violate the condition at infinity given in
§ 2.3.3.

The most general solution of (5.1) that satisfies the condition at infinity
is therefore of the form (5.11), and this obviously satisfies the differential
equation (5.4), '

5.1.3, Third method

In this case we start from the integro-differential equation (4.4), whose
solution can always be constructed as a superposition of plane waves.
In an infinite source-free medium, all directions are equivalent, and it is
sufficient to find the solution which depends, as regards position, on one
Cartesian coordinate,  say. The solution will then depend, as regards
direction, only on the angle made with the z-axis, whose cosine is denoted

by p. Integrating (4.4) over the azimuthal angle, we get for the present
case

1
#%%@?—“) = %_[ Pl w)dp’. (6.12)

This is & linear equation in terms of z with constant coefficients, and the
solution is therefore of the form

Pz, p) = eg(p). (6.13)
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Substituting this into (5.12) and dividing through by e**, we have
1 ¢ [ "oy
(o 7)ot = § [ ot aw,
-1

and if this .equat.ion has a non-trivial solution it follows that
1
_ ¢ du ¢ 148l
1= _f 14-pusl Es—llogl—sl'
-1
On comparing (5.14) with (5.5) we see at once that 8 = +4-1/L, and so
the neutron flux corresponding to (5.13) is given by

(5.14)

p(x) = constant X ex%'L,

which is a solution of (5.4). The neutron flux associated with any other
plane wave should similarly be a solution of (5.4), and so the general
solution of (5.1), which is a superposition of such waves, is also a solution
of (5.4).

5.2. The diffusion length

The quantity L introduced in § 5.1 and defined by (5.5) is of great
mportance in neutron transport theory and, if real, is called the diffusion
length.

If ¢, the number of secondaries per collision, is close to unity, L may
be expanded in powers of (1—c), and we easily find from the power
series preceding (5.5):

L= «/3(1 Byt TE1—9+0l—0)]} (5.15a)

A s G e A e N

The latter of these two formulae is more convenient, since the numerical
coefficient of the second term in the series is smaller, and so the leading
term is a good approximation over a rather wider range of values of
(1—c¢). However, if (1—c) is not small compared with unity, then neither
formula is reliable, and (5.5) itself must be solved.

If fission is absent, so that only capture and scattering are possible,
then (5.15b) can be rewritten in a somewhat different form. The formulae
of § 1.3.1 become (since the present I = I,,)

11 = 1/l,+1/L, c =1L,
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and in terms of /, and [, (5.15b) becomes

[ ) S

The formula (5.15a) similarly becomes

- [l o

If a sufficiently large proportion of fissile material is present in the
medium, the mean number of secondaries ¢ will be greater than unity.
In this case the solution of (5.5) is easily seen to be purely imaginary.
Instead of L we then define

x = /L, (5.17)
and rewrite (5.4) as Vip(r)+«2o(r) = 0. (5.4)

5.3. An isotropic point source in an infinite homogeneous

medium

We now turn to the case where sources are present in an infinite homo-
geneous medium, and consider first an isotropic point source. The solu-
tion need be found only for neutron fluxes p(r) vanishing at infinity; for
the solution with an arbitrary behaviour at infinity may, in view of the
linearity of the equations, be represented as the sum of the solution for a
point source and zero flux at infinity, and the solution for no sources and
the required behaviour at infinity, which has already been discussed.

If the position of the point source is taken as origin and its total

strength is 478, then the source distribution in (4.15) is 8(r) = §,8(r),
and (4.15) becomes

o) = J’ [f p(r')e-"—r"ﬂli":,l,+so°—",—". (5.18)
all space

r

with the boundary condition
p(c0) = 0. (5.19)
In (5.18), d¥V’ is the volume element in r’-space, and r = Ir|. The
number of secondaries per collision ¢ is assumed not to exceed unity,
since otherwise, by (5.4’), the infinite medium is already supercritical,
and according to § 3.2 there is no direct physical significance in the
examination of this medium in the presence of sources. We shall, in fact,
exclude for the moment the case ¢ = 1 also. .
We shall solve (5.18) by using the Fourier transform technique as in
§5.1.2. The equation (5.18) s first subjected to a Fourier transformation,
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i.e. is multiplied by ¢*? and integrated over all r-space, putting
Fp)= [[[ plr)eter ap,. (5.20)

. all gpace
The condition (5.19) ensures the convergence of this integral, provided

that ¢ < 1. Using (5.7) and the Fourier transform convolution theorem,
we then find

F(p) = (¢/pl)tan-2pl F(p)-+(4mS,/p)tan-ipl,
and hence F(p) = w

pl—ctan-1pl’ (5.21)
The Fourier transform inversion theorem then gives
_ 8 tan-pl ..
plr) =325 f f f F—otanpi° dv,. (5.22)
all space

The integral in (5.22) does not converge in the ordinary sense, but
oecillates; that is, if the integral is extended not over all p-space but over
a large sphere of radius P, say, then the integral is an oscillating function
of P as P tends to infinity. There is, however, a mean value about which
the oscillation takes place, and by the Fourier inversion theorem this is
the value to be used for the integral. Such a procedure is called inter-
preting the integral in the Cesdro sense.

Thus, integrating (5.22) over all angles in p-space, we have

_ 28, ( tan—1pl .
0

or, equivalently,

_ 5 r tan-1pl ior
P(r) = m f We dp, (5.23)
-

where the integrali taken in the Cesiro sense, i.e. it is evaluated between
the limits — P and P, where P is large, and the average over P is taken.
The evaluation is effected by deforming the path of integration. The
singularities of the integrand in (5.23) are :

(i) the poles at the two roots of
1—(c/pl)tan-1pl = 0,
i.e. at the points p = 3i/L, (6.24)
where L is defined by (5.5). Sinoe ¢ is assumed less than unity, L is real,
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and therefore the poles (5.24) are on the imaginary axis, one in the upper
and one in the lower half-plane; :

(ii) the cuts along the imaginary axis from » =4[l to p = {0 and
from p = —ifl to p = —ico, with the values of tan—1pl on the two sides
of the cut differing by =.

Thus the integral (5.23) taken along the real axis from — P to P will
be equal to the integral taken along the following path (see Fig. 3): from
»= —P along the arc p = Pe?® to
p = iP; from p = iP along the imagin-
ary axis, left of the cut, to p = t/l; from

» = i/l along the imaginary axis, right yl

of the cut, to p = ¢ P; from p = i P along VL ()

the arc p = Pe® to p = P, plus the

integral anticlockwise round a small -7 £

circle about the point p = §/L. The
integrals along the two arcs of p = Pet?
are oscillating functions of P, but it is
easy to see that their sum oscillates
about a mean value tending to zero as P
tends to infinity. Their contribution to Fra. 3.

the integral (5.23) taken in the Cesdro sense is therefore zero, On passing
to the limit P —» oo and calculating the residue at p = t/L and the
integrals along the cut, we find

_ S eIimy
plr) = Tzo{c"L' Ty Ay L

F - 3 —1\1
+ g-"ﬂ[l+§log:_*-—i+{?(w’+log’::%)] da}. (5.25)
1 .

The case ¢ = 1 is dealt with by passing to the limit as ¢ - 1 and using
(5.15); thus

© : _ -
P =i+ [ dionihe o) ]
1

(5.26)

It may be noticed here that the use of Cesiro summation could have
been avoided, at the cost of more laborious algebra, by putting

© p(r) = (Sy/rt)e~""+-py(r),
and applying the Fourier transform to the result of substituting this into
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(5.18). Instead of (5.22) we should then have

8, Syel tan-1pl)?
w0 =343 [[] srremmen e
all

pl(pl—ctan-1pl)
which leads to (5.25) as before.

space
The values of p(r) derived from these formulae have been given by
Bothe (5), and Fig. 4 shows his values of rp,(r) X nl/2¢8,.

c
el

A

xwl/2¢S,
@izl

0

r/l
Fi10. 4. 4, B, and O are for ¢ = 1, 0-81, and 0'5 respoctively.

Using (5.5) and/or (5.15), we see that, except for c<€ 1 (or the
physically impossible case ¢ 3> 1), the coefficient

2} 12-12)
cLP(cLA+12—L3)

is comparable with unity. Thus the first term of (5.25) is of the order of
e-7/L, while for r > [ the second term is seen to be of the order of e-",
Hence, for r > I, the second term in (5.25) and (5.26) can be neglected
in the first approximation, and the remaining term s, for » # 0, a solution
of (5.4)." This means that p(r) can be represented in the formt

P(r) = pog(r)+pulr), (5.27)

t It must be remarked, however, that the distinction between py(r) and pylr) is
signifioant only if o is comparatively close to unity, since only in this case does py,(r)
become predominant at reasonably small distances. If ¢ is small, p,,(r) does not become
predominant except at very large distances. Case, do Hoffmann, and Placzek (8, p. 108)
have made a comparison of py(r) and py(r) for various values of ¢ and r/l:

em1 rfle=1 PLa(r)/pas(r) = 0-085
2:5 0-007

05 1 062

12 0-10
20 0-043

03 1 0-93

10 065

20 0-54

01 20 5x10*
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where p,,(r) is, for 7 # 0, a solution of (5.4) and

pualr) = O(e="M). (5.28)

Since the equation (5.4) is identical in form with the equation of diffusion,
Pus(7) is sometimes denoted by p (7).

5.4. An anisotropic point source in an infinite homogeneous

medium

The treatment given above can easily be extended to the case of an
anisotropio point source. We shall not work out this case in detail, but
we shall outline two possible methods of solution and then prove that the
formula (5.27) is applicable in this case also. The first method is the
more useful in practice, but the second makes easier the proof of (5.27).

In the first method, the neutron flux due to the source is represented
a8 the sum of two terms, the flux of neutrons coming directly from the
source and the flux of neutrons that have had at least one collision, The
former is given by (1/r2)e-"18,(r/r),

where S,(2) dQ is the flux of neutrons emitted by the anisotropic point
source into the solid angle dQ about £, while the latter term can be
regarded as the neutron flux due to a distributed system of isotropic
sources, the source strength per unit volume and solid angle being given

by (c/4mril)e="R8y(r/r).

Using the results of § 5.3 and combining the two contributions, we have

plr) = f [ f W, —*-HS(O){su- o+ el lE—r), - (5:20)

all space

where dJ; is the volume element in r-space; p,, is the flux due to an
isotropic point source of unit strength, and is gwen by (5.25) with S,
equal to unity.

In the second method, we start from the integral equation for the
neutron flux in an infinite homogeneous medium, with isotropic scatter-
ing and an anisotropic point source at the origin emitting a flux
§,(82) dQ2 into the solid angle dQ about ; this is

o =2 f f f plr)eme-r1 v’ +3 —rﬂs,,(g). (5.30)

jr—1r'|2
allspace

This can be seen either from (5.18), since the equations for isotropic
source and anisotropic source can differ only in the term due to neutrons
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. ocoming directly from the source, which is the free term; or from (4.20),

which for isotropio scattering and an infinite homogeneous medium
~ becomes

e, Q) = I dRe-"-('-m)V‘{%il f f Yr—RQ,Q) dQ’+.s(r—R$2,$2)}.

On integrating this over all , putting r’ = r— RQ and using

8(r,R) = 3(r)S,(R),
we obtain (5.30).

As before, we assume the boundary condition (5.19) satisfied, and
¢ <1 If now §(R) is expanded in spherical harmonics, so that
© By(R2) = T 8,,,(2), say, where Som 18 & spherical harmonic of order m,
then the solution of (5.30) will be p(r) = 3 p,(r), where p,(r) is the
+ solution of (5.30) with Sy(r/r) replaced by S,,(r/r). It is therefore

necessary to solve (5.30) only when &S, is a spherical harmonic Som of
some order m, so that

Som(r/r) = rmp,(2,y,2),

where p,(z,y,2) is a polynomial of order m satisfying the equation

' Vip = 0. Itis known that, if T'(r) is any m times differentiable function
of r only, then '

2 2 9 _ dmT(r)

Pa{Gy 557 2) T = Bules 9 T2, (5.31)
where p,,(3/2x,8/dy, 8/0z) is obtained from P2, ¥,
8/0z, eto. This formula is proved in (23), p. 127.

We take for 7;,(r) that solution of the differential equation

arT, (r) e

z) by replacing = by

Ty = o (5.32)
which satisfies the boundary condition
lim [e""T;,(r)] = 0, (5.33)

8o that the free term of (5.30) becomes

bl

and we consider the auxiliary equation

Iulr) = 4%1 J f f q..(r')e-lr-'wl_l_%+mm(r). (5.34)
 SPace
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This can be solved in the same way a8 (5.18), since, though the functions
Toa(r) form > 1 are not themselves elementary, their Fourier transforms
are.} The solution of (5.34) therefore offers no new difficulties compared
with that of (5.18). But substituting in (5.34) r* = r—r’ and operating
on the equation with P(0/0%, [0y, 8/02) shows that

Pm(0/0z, 0]y, 8/02)g,,(r)

gives the solution of (6.30) with Sy(r/r) replaced by S,,(r/r). The
solution of (5.30) is therefore

o) = 3 pn( s 2 Eoutr). (6.35)

We now prove from (5.34) that the result (5.27 ) holds also for the case
of an anisotropic source. The derivation of (5.27) rested primarily on
the kernel of (5.18), which is the same as that of (5.34); the only two
properties of the free term of (6.18) used in the derivation of (5.27) were:

(i) it depends only on the radial coordinate r, so that its Fourier
transform- depends only on 2, and is an even function of P;
(ii) for large r it behaves as e~%, 8o that its Fourier transform is
regular in the strip —~1/I < imp < 11
The free term of (5.34) possesges both these properties, the second
being ensured by the boundary condition (5.33). It follows that the
solution of (5.34) can be represented, similarly to (5.27), in the form

gm(r) = gm.u(r)""'gm,tr(’)t (5-36)
where g,, ,, satisfies the equation (Vi—1/LY)yg,. ., = 0, while Fmtalr) is of
the order of e-7, Operating on (5.36) with Pn(0/0z, 8/0y, 8/0z) and using
(5.35), we see that (5.27) holds also in the case of an anisotropic source,
provided that the series 2 Som(R) converges, i.e. 8,(R2) does not contain
a delta function.

From this extension of (5.27) we can draw some conclusions about the
neutron distribution in finite media. Leta homogeneous medium extend
over & volume ¥ bounded by a surface 8, while outside S the medium
has different properties or is absent altogether. Let ¢(r,Q) be the
distribution of neutrons actually present in the system, and let P (r, Q)
be & possible angular distribution of neutrons in an infinite medium with

t This is proved by integrating the expression for the Fourier transform of 7', m

times by parts, using (5.32), expanding the result in powers of the transform variable,
and using the expressions for the moments of Legendre functions over the Tange O to 1,

B Foln) du.
1]
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the same values of  and ¢ as are found in V. Let ¢(r, ) be defined by

1 for r on 8 and £ pointing into ¥,
¢(r,R) == { —1 for r on § and L pointing out of V,
0 otherwise,

and consider the angular distribution of neutrons in the infinite homo-
geneous medium, satisfying the same conditions at infinity as §'(r,),
but in the presence of independent neutron sources given by

a(r,2) = [Y(r,Q)—'(r,2)]e(r,2). (5.37)
It is readily seen that the resulting angular distribution ¢/"(r,£) will
coincide with (r,£2) inside V and with /'(r,Q) outside V; for with
J* = ' outside V, the number of neutrons entering V from outside,
added to the contribution of the sources (5.37), will equal that entering
V in the actual case of a finite medium; while if " = ¢ inside V, the
number of neutrons leaving V¥, added to the source contribution, will
equal that leaving ¥ when the sources are absent and the distribution
in Visy'.

Thus the neutron angular distribution, and therefore also the flux, in
any finite region bounded by a surface S, are equal to those in an infinite
region when a suitable system of anisotropic sources is placed on the
surface 8. Further, by (5.37), for fixed r these sources are not delta
functions of 2, and so the expansion of s(r,2) in spherical harmonics in
 will converge, and the formula (5.27) is applicable. Therefore, in any
region, finite or not, in which I and ¢ are constant, the neutron flux in
the constant cross-section approximation can be represented in the form

P(r) = paiee(r)+pir(r), (5.38)
where pa,(r) satisfies (5.4) and
Ptr(r) = O(C_dﬂ)’ (5°39)

where d is the distance from r to the nearest source or boundary.
The first term in (5.38) we call p4,,(r) rather than p (r), since for finite
media one cannot properly speak of asymptotic solutions.

5.5. ‘An isotropic line or plane source in an infinite homogeneous
medium ‘

5.5.1. The line source

Using the availability of the point source solution, it is easy to con-
struct solutions for line, plane, and distributed sources. We first consider
a line source of unit strength per unit length and suppose for the moment
that ¢ << 1. Let r now denote the distance of r from the line source,
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pi{r) be the neutron flux at distance # from the line, and z be measured
along the line. Then clearly

pl) = [ pulB)dz, (5.40)

where R is the distance from the point 7 to the line element dz, i.e. with a
suitable choice of origin for 2, 2422 = R?, and Ppir) is the isotropio
point source solution determined in § 5.3. Since the strength of the line
source is unity per unit length when integrated over all directions, in
Pu(r) we must take S, -~ 1 [4m. Substituting (5.25) into (6.40) and
using R as the variable of integration, we find

plr) =

1 [ dn WIA-P)
27l | J(=r%) cL¥c[2+PB_L3) +

( _ €, 8—1 ¢? 28—1\12
+ fe R'/'[l-}-;logm-{-@(‘rr’—}—log m)] da}.
1

Putting R = 2r and using the result

@® ey )
2 dz = Ko(y);
j J&E=T) .

whore K, is the modified Bosgel funoction of the second kind of zero order,
we have

_ 1 2 (L8--I3) r
pilr) = 2_ﬂ{'cL"(c'L’+_l'-—' i) K°(T;) +

s+1

The solution for ¢ = 1 cannot be obtained by proceeding to the limit in
(5.41), since for ¢ > 1, L + o0 and Ky(r/L) becomes infinite, However,
if the boundary condition P(0) = 0 is replaced by the less strict condi-
tion that p(r) is a function only of r, then, since I(r/L) is a solution of
V2 = p/L? regular in all space,

A0 = St e {5~ 44{5) |+

s _ ~1\1-1
+ f Ko(ra/l)[l +glog"_!+fslz(n=+log=:;+_:)] da}, (5.42)
1

r * —_ 3 — -1
+ f Ko(rs/l)[l+§10gi_l+%,(w'+log=§+_:)] da}. (6.41)
1

8+1
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where A is a constant, is also a possible solution for a line source of unit

strength for ¢ < 1. :
For small z,

Ey(z) = log(2/2)—y+O(z*log )
and L) = 140,
where y is Euler's constant. Thus, if we choose

A = log(2Ljl)—y—4’,

where A’ is another constant, independent of ¢, substitute in (5.42) and
pass to the limit ¢ - 1, we obtain

1 l '
R

+| Ko(ra/l)[l +l10g°—2 +_1-(w-+1og-€:1)]" da}. (5.43)
; 8 “a-t+1 " 482 8+1
It is evident that, whatever the value of 4’, if it is finite, (5.43) becomes
negative for r sufficiently large. A solution positive for r < a (say) can,
however, always be achieved by putting 4’ = 3log(a/l).

This shows that a stationary neutron distribution is impossible in an
infinite non-capturing medium containing an infinitely long line source
of constant strength per unit length. In practice, however, the system
will be finite, the infinite line being introduced as an approximation. In
this case, the flux beyond the boundary of the eystem will be irrelevant,
and a stationary solution is possible.

5.5.2. The plane source

We now consider a plane source of unit strength per unit area and again
assume that ¢ < 1. Let p,(x) be the neutron flux at distance z from the
plane, R the distance from the point of measurement to some element of

area of the plane, and r the projection of R on the plane. Similarly to
(5.40) we havet

Pol@) = 2m I r dr pp(R), (6.44)
where R? = 13420, °

+ The converse of (5.44) is

1 [opgi(®)
(f R e— ——— [..__’L__. .
Ppilr) 2arl oz Jgey
Thus, if the flux distribution due to either a point source or & plane source is known, the
other can be found. Theee formulae sre valid generally, and not only for the conatant
croes-section approximation.
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Again substituting (5.25) with §, = 1/4n for p,(r), and using R as
the variable of integration, we find

1(  em(Ia—p RdR
Pal®) = ?z{cLz(cz(ﬁw )Lﬂ) f R+

+f [1+ log 3+ £ (z+l°g28+i)] | E;_R;e-m}.

1.
that is, =

1 2U(L2—1
o) = 'Q[E'IT(EL(L{-Z—QL*) ettt

-Elfe e ”[ +2log +1+ ('+log=’+1)] da}. (6.45)

To deal with the case ¢ = 1 it is again necessary to replace the condi-
tion p,(4-00) = 0 by the less strict requirement that p(x) is a function
of |x| only. In this case

NS V¢ N e P
) = i e o)+

~ gt ¢y, 8—1 8 -1 4
+j P [1+;log"+l (’-{-log' +1)] da} (5.46)

is also a permissible solution, and choosing 4 = 1—A'l/L, where 4’
is independent of ¢, substituting in (5.46) and passing to the limit ¢ - 1
and thus L — o0, we have

[,y = %{3(A'_|_Zl‘_|) +

Qe-lzl'/‘ 1, &—1 s—1\1
+f ; [1+—lo 8= (a+1og- +1)] da}. (5.47)
3

As with (5.43), this expression will become negative for sufficiently large
jz], whatever the value of A’. The consequences of this are the same as
were stated regarding the equation (5.43).

On comparing (5.45) with (5.25), we see that, whereas in the latter the
relative error involved in replacing p(r) by pau(r) was of the order of
e~ for r > 1, the corresponding error for & plane source is of the order
of (}/L)e~"#I%, so that p(r) can be justifiably replaced by pay(r) much

360600 ¥
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nearer to a plane source than to'a point source. The same will clearly be -
true for an anisotropic plane source also, and consequently for plane
boundaries; and the method of derivation shows that, even for any
boundary of considerable lateral extent and small curvature, p(r) may
be replaced by pa(r) at quite small distances. Furthermore, it can be
shown that, if there is a system of isotropic sources distributed uniformly
in a plane layer of finite thickness 2z, say, then provided that

Ljl > log(l/a)
(that is, unless @ is very small), the error involved in replacing p(r) by

Pais(r) will be negligible not only far from the source layer, but also up
to and even inside it.



VI

EXACT SOLUTIONS FOR AN INFINITE HALF-SPACE

6.1. Milne’s problem

THE theorem proved at the.end of § 5.4, together with the discussion at
the end of the last section, shows that in dealing with a domain whose
dimensions are very much larger than the mean free path we shall obtain
an approximate solution of (4.15) (without the source term) by solving
instead tho differential oquation (6.4) with the appropriate boundary
conditions. These conditions, however, cannot be found in anelementary
manner; that is, they will not be the boundary conditions that would be
imposed on (5.4) if it were valid up to the boundary. In order to find out
something about the necessary boundary conditions, we shall now solve
some problems which involve various kinds of boundary but are other-
wise simple enough to permit an exact solution,

We first consider Milne's problem. This consists in determining the
neutron flux in & homogeneous source-free medium occupying the half-
space x > 0, the half-space z < 0 being & vacuum and z = 0 being a
free surface (see § 2.3.2); that is, no neutrons fall on this surface from
outside the medium. The flux is agsumed to depend only on the co-
ordinate = which measures the distance normally into the medium, For
this case, the source-free form of equation (4.16) is

p(r) = quﬂ f f f p(r’)e~tr-r '”;,.‘ivrll i

>0

or, putting p(r) = p(z) and integrating over the planes 2’ = constant,

N k-]

o) = 5 [ (25 (61)
o\
where E(z) is defined by ®
-
B(z) = f ¢ td‘. (6.2)

1
We shall now solve (6.1) by the Wiener-Hopf method of Fourier
transforms (see Titchmarsh (49), P. 339). For this purpose we extend
the definition of p(x) into the region of negative z, by assuming the
formula (6.1) to be valid for z either positive or negative. The p(x) so
defined has, of course, no relation to the flux actually found in z < 0 in
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~ the conditions of the actual problem. Its physical significance is found
- by replacing the vacuum in < 0 by a medium with ¢ = 0 (i.e. all
- oollisions in it result in capture) and the same [ as for 2 > 0. The solution
. for 2 > 0 is unaltered, while equation (6.1) now holds for all .
- We now introduoe two Fourier transforms,
@ [}
FHp)= [ev=p(a)dz, F-(p)= [ evpz)dz;  (6.3)
[ —®
that is, F+(p) is the Fourier transform of a function which equals p(z)
. forz > 0 and vanishes for z < 0, while F'-(p) is that of a function which
- equals p(z) for z < 0 and vanishes for z > 0. The equation is multiplied

by e** and integrated over all z. = After simple transformations
resembling those of Chapter V, we find

F+(p)+F-(p) = (c/pl)tan-'pl F+(p),

or F*(p)(l—ctal;_llpt) = —F(p). (6.4)

The equation (6.4) involves two unknown functions, but there are
further conditions to be imposed on them. It follows from (6.1) that, for -
z - —oo0, p(x) should behave approximately as e-1%. The integral (6.3)
defining F'-(p) will then converge for all imp < 1/I, including the whole
lower half-plane, and will converge uniformly for all imp < (1—e¢)/,
where ¢ is any real positive number. Thus F'-(p) is regular in the half-
plane im p < 1fI. Similarly, it follows from the discussion in Chapter V
that, for z - 400, p(z) cannot increase faster than ¢*Z, and therefore
F+(p) should be regular in the half-plane im» >re 1/L. Further, by a
general property of Fourier transforms, F+(p) and F-(p) should be
quadratically summable along paths parallel to the real axis in the half-
planes in which they are regular. That is, the integrals

w4 {8 @+is,

[ 1F-p)irdp and [ |Pep)rdp (8.5)

~ Dt 8 -+is,
should converge for any s_ < 1/l and s, > re1/L.
The problem is therefore reduced to that of representing

1—(c/pl)tan-1pl
as a ratio of two functions satisfying the above regularity conditions, It
is kmown that the representation of a function as the sum or difference of
two functions, one regular in each half-plane, can be effected by using

the Cauchy integral. Our problem, however, is nothing more than re-
presenting the logarithm of a function as the difference of the logarithms
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of two such functions. There is therefore no difficulty, apart from the
point that at a zero of a function its logarithm is singular, even though
the function itself is regular. It has been pointed out in § 5.1.2 that
1—(¢c/pl)tan-1pl has only two zeros in the complex p-plane out along the
imaginary axis from p = —ic0top = —i/l and from p = ¢/l to p = 4o0;
these are at p = +-¢/L, where L is the solution of (6.5). Thus

1 l—e tan~1p

p*+1/L3 »l

has no zeros for finite p in the cut plane. For p — 0o this expression is

zero, but this can be dealt with by multiplying it by (p*-+1/i%); the
logarithm of the result is

P41/ tan-1p ]
log{1r>'+1/L‘ =)y
and this has no zeros in the cut plane and tends to zero for P - o0,

Putting then pI41/1 ; tan-1pl\  h+(pl)
P’+1/L’( T TRy
where h+(pl) is regular and non-zero for imp > 0, and h=(pl) is regular
and non-zero for imp < 0, and both tend to unity when |p] = oo, the
functions 4+ and &~ can be determined at once by means of the Cauchy
integral. »
For this, we consider the integral

(6.6)

1, [t’-{-l/l’ (l__ctan-l ]

2m ) t—p °|B1/L3 ] (6.7)
where the integration is along the real axis. By (6.8), this equals
1 fde, o (Tde,
o f ploem@+o [ ogh-). (8.8)

According to the assumed properties of h+(tl), the integral
-7
dt
—— +
J' £ logh (),
T

taken along the arc ¢ = Te¥ for 0 < 8 < m, tends to zero as 7 — c0. The
first integral in (6.8) can therefore be regarded as taken along the closed
contour shown in Fig. 5a, and similarly the second integral can be
regarded as taken along the closed contour shown in Fig. 5b.
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Ifnow im p > 0, the integrand in the first term has just one singularity
inside the contour of Fig. 5a, namely a simple pole at t = p, 8o that the
first term in (6.8) is equal to log h*(pl). The integrand in the second term
is regular inside the contour of Fig. 55, so that the second term in (6.8)
vanishes. Thus, for imp > 0, (6.8) is equal to logh+(pl). Similarly, for "

=T

Real axis

Real axis

a b
Fia. 5.

imp < 0 it equals logh-(pl). Since (8.6) is regular in the cut plane, it
follows by deforming the path of integration that v

tj =, ret>0

1 dt log[ r?+1/12 (1_ tan-1 ]

2m t—p t2+1/L2 u
14| =0, rot <0
_ {log h+(pl) if the path is below ¢ = p,

log h~(pl) if the path is above ¢ = p,

for any path of integration that does not intersect itself or the cuts. This
result shows that A+(pl) is regular in the entire plane cut along the
imaginary axis from p = —ic0 to p = —i/l, and h~(pl) is regular in the
entire plane cut from p = i/l to p = ico,
By substituting —¢ for ¢ in (6.9) we find the relation
h~(pl) = 1/h*(—pl), (6.10)
and combining this with (8.8) we obtain also
pi4-1/i2 l_ctan'lp
YL ol
& relation which will be of use later.
We now continue with the determination of F+(p). Substituting (6.6)

into (6.4) and eliminating the denominators, we have
FHp)h*(@l)p*+1/L%) = —F-(p)h~(pl)(p*+1/13). (6.12)

Each factor on the right of (6.12) is regular for imp < 1/I, and each
factor on the left is regular for imp > rel/L, where re1/L < 1/I, as
follows from (5.5). Both sides of (6.12) are therefore regular everywhere.

(6.9)

— he(phh+(—pl), (8.11)
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Further, F~(p) and h-(pl) are regular at p = —¢/I, hence the right side
of (6.12) is zero there; the left side is therefore also zero, and so

p+1/L2

p+ifl

are themselves regular everywhere. Since F+(p) is quadratically sum-
mable in the upper half-plane, it tends to zero as |p| »c0 with
imp > rel/L; h*(p) tends to unity and (p2+1/L?)/(p+i/l) behaves
as p, for |p| - oo0. Thus, for imp > re1/L, the first expression (6.13)
increases more slowly than |p|, if at all. Similarly, for |p| - co with
imp < 1/I, the second expression (6.13) increases more slowly than |p|,
if at all. The two expressions being equal, it follows that for any im p
they increase slower than '|p|, if at all. They are therefore equal to a
constant, by Liouville’s theorem. Therefore

Alp+ifh 1
Hp) =200 F
PO = B W
where A is some constant. To determine A, we take p = iM and let
M tend to infinity. Since h+(i0c0) = 1, the above formula gives
F+iM) = A[iM+smaller terms,
while from the definition (6.3) we have »
F+(iM) = p(0)/ M 4-smaller terms.
We shall see later that the ‘smaller terms’ are of the order of (log M)/3/2,
since the derivative of p(x) has a logarithmic singularity at « = 0.
Thus 4 = 1p(0), and the expression for F+(p) becomes
o(oy  PONDEI 1
P =300 wh
Taking the inverse Fourier transform, we obtain the neutron flux:

() _ ip(0)L* J’ plts . dp
PE ) PPLEE1 T Rl

F+(p)ht(pl) and —F-(ph-(pl)(p—ifl)  (6.13)

(6.14)

(x> 0), (8.15)
-+l
where ¢ > re1/L. Mark (34) has utilized this result to evaluate p(z) for
small z.
The angular distribution also is often of interest, and in particular the

emergent distribution (0, x). For this, comparing (6.3) and (4.186), we
find, since there are no sources present,

$(0,p) = p( Rp)e~FRdR = ll#l F+iflull) (» <0), (6.16)
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and this gives the physical interpretation of F+(p). Combining (6.16)
and (6.14) we also have

0 l1—u 1
$(0,p) = T~ =Bt WGy (x < 0). (6.17)

6.2. The asymptotic behaviour of the neutron flux in Milne’s
problem

We shall now put the above results into & more convenient form, On
deforming the path of integration in (6.15), calculating the contributions
from the poles p = 4.4/L by the method of residues, and substituting

in the remaining integral p = —is, we obtain
L 1 L 1
=z - 2L b | LAY |
pl) iP(O){(l )h*( l/L)c (l l) h"'(-il/L)" "

+- f 8_11//;42[h+(—1«:sm_h+(—lisl—)]e-u da}’

where h+(—isl-) and h+(—isl—) are the values of A+(pl) immediately
right and left of the cut at p = —is. Transforming the last term by
means of (6.10) and (6.8), we finally have

o) = 400 (7 +1) ey~ () ey

[ h(islye=s lo—1 Jo1\7-1
TS [l+lal°gla+1+4l=s=( =+logzla+1)] d.s}. (6.18)

The first two terms in (6.18) represent the p,,(z) or py(x) of § 5.4, and
the last term is p, (). If z >, the last term can be neglected, while the
other two terms can be conveniently written by introducing the quantity

2y, defined by _
2, = }Llog {i’“i h;ﬂ(d’/%)} (6.19)

For, using (6.11), we get as in (5.25)

3 i\  cl*—-L3412
and then by (6.19) and (6.20) the formula (6.18) can be rewritten
2(L2—1%) \} . , z+z _
pl@) = p(0 >( 2= +lz) s ¥ o, (a.21)
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In particular, for the case of no capture (¢ = 1andso L = o), by passing
to the limit ¢ - 1 in (6.21) we find

[p(@)]eny = V3p(0)(x+2,)/1-+ O(e=). (6.22)

The quantity z, defined by (6.19) has a simple interpretation, since
.21) impli
(8.21) implies that Pasl—70) = 0; (6.23)

that is, z, is the distance beyond the surface of the medium at which
the asymptotic neutron flux vanishes, and it is therefore known as
the extrapolated end-point. The equation (6.23) may be regarded as the
boundary condition satisfied by p,,(r) in Milne’s problem.

The results which we have obtained for the asymptotic neutron flux
can alternatively be expressed by means of the quantity

A == 0,,(0)/poa(0), (8.24)
where the dash denotes differentiation with respect to z. This is called

the linear extrapolation length. Using (6.21), it is easy to verify that the
linear extrapolation length is connected with the extrapolated end-point

by the relation A = Ltanh(z,/L). (8.25)

This formula also shows that, for the case of no capture, A and z, are
the same, which could have been derived directly from (6.22).

The numerical evaluation of z, and A may be carried out as follows:
(6.19) is combined with (8.9), choosing in the latter a path of integration
starting at ¢ = —qoo just left of the cut, passing up the cut to t = —i/l
and then back to ¢t = —ico just right of the out. Putting ¢ = —is, we
easily ind

)
_ L+l 1 ds .. tan-1(—isl4-¢)
%=tLllogz—5 | by vy Bvd {l°g[l_°‘—-"u'z"-|7“]‘
1

tan—1(—isl—e¢)
- log[l—c-—-————-—_’.sl__e ]}.

and since in the cut plane

. . , l4+1 ‘
P_gtan"[-——wl-{-c] = {n—izlog(g-l%),

limta.n“[—-ial—s] = —i‘"—iilog(al+l).
«—0

al—1
this gives
~ L+l 1 [ ds . om
Zy= '}Llog'LTl—;; a1 Taton {231—2clog{(81+1)/(81— Y’
i

(6.26)
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which can be evaluated numerically. Equation (6.25) then gives A. In
the case of no capture (c = 1), (6.26) gives

zo/l = 0-T104..., (6.27)

80 that (6.22) becomes

[p(#)]a1 = ¥3p(0)[2/l+0-T104... 4+ O(e==M)]. (6.28)

The tabulation of z, from (6.26) for other values of ¢ has shown that,

over a wide range of c, z, is well approximated by

2 = 0-7104l/c, (6.29)

which gives z, to within 0-7 per cent. for 0-6 < ¢ < 2. From (6.29) and
(8.25), together with (5.15), it follows that, for ¢ fairly close to unity,

A 2 0-71041/+c, (6.30)

but the range of validity of this expression is smaller than that of (8.29).

6.3. The neutron current in Milne’s problem

6.3.1. The neutron current in the deep interior

The neutron current j(r) was definod in (4.6). This quantity is of
frequent occurrence, and it is therefore of interest to find its value in
Milne’s problem. Inahomogeneous medium with constant cross-sections,
isotropio scattering, and no anisotropic sources, it is given in terms of
p(r) by (4.17). In the absence of sources, the latter is

=2 J' f J' 2= rl em-rilp(r) V", (4.17)

and if p(r) depends only on z, the y and z components of j(r) will vanish,
while the £ component, which we call j(z) simply, is given, on integrating
(4.17') over y and z, by

i) = p(x E(Z sign(e—z) v, (6.31)

where E,(z) and signz are defined by

© ott
Bz) = f ot
1
signz = +1 for 2z >0, = —1 for z2<0
The limits of integration in (6.31) correspond to the case where the

medium occupies the space z > 0. If j(z) > 0, the net current is in the
direction of increasing z.

(6.32)



VL §3 THE NEUTRON CURRENT IN MILNE’S PROBLEM 75

An alternative expression for the neutron current in this case may be
derived as follows. From the definition (4.6), the net excess of neutrons
flowing out through a closed surface 4 per unit time is

[[ix).aa, (6.33)
4

where dA is & vector element of area directed outwards. If V is the
volume ingide A4, the number of neutrons undergoing collisions in ¥ per
unit time is, in the constant cross-section approximation,

[[] ote) av i),
and the number of secondary neutrons thereby produced is
j f f e(r)p(r) dV/i(r).
Equating the excess production to the net escape from V we have

f j j(r).dA = J' f f [c(;()l:)—lp(r)-l»a(r)]dl’, (8.34)
A ’ 1 4

where s(r) is the contribution due to independent neutron sources,

In the case of no sources, ¢(r) and /(r) independent of position and
p(r) depending only on z, we get

je =it =7 [saraw, (6.35)

o

which could also be derived from (6.31) by differentiating and using
(6.1).

For the agymptotic region in Milne’s problem, i.e. for > I, we find

by substituting (6.21) into (6.31), extending the lower limit of integra-
tion to —o0, and writing

B= ,,(0,(5%:,%)*, (6.36)
the result

i) = % j sinhzl_;z"E',( x_lzll)sign(x—x’) dz’ [14-O(e—=M)]

x4z,

= —Tcosh

f sinh? ( ) dy [1-+0(e=")].

On effecting the integration and using (6.21) and (5.5), we find

oy =L “’“1) o (@14 O(e=M]. (8.37)
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In particular, for the case of no capture, (6.37) gives in the limit

o>t [@),., = =M@, (140,
and, since in this case j(z) is a constant by (6.35),

[i@)my = =3 ()], (6.38)

6.3.2. The neutron current at the free surface
We now consider the value of the neutron current at the free surface,
which we know already for ¢ = 1, from (6.38). This could be obtained
by substituting (6.18) into (6.31), but we shall find it by an alternative

method, which does not use the solutions found in § 6.1 and 6.2. We
introduce the function

Y(@) = ') — oy f ) &'+ D, (6.39)
and the abbreviation
Ad) = £, f ¢(z’)E,(’”“”') dz, (6.40)

where ¢(z) is any function such tha.t (6.40) converges. With this notation,
the equation (8.1) can be written (1—A)p(z) = 0. We shall also use tho

relations - ? Az)— Ad¢(x) 4 £ 5(0) El( ) (6.41)
of Ad(u) du —A of P(u) du = —}¢ of ¢(u)E,(’7‘) du,  (6.42)

. f Ad(u) du —A j $(u) du = %cEg(;) fnﬁ(u) du. (6.43)

The first of these is obtained by diﬁerentia.ting (6.40), and the third

is then obtained by replacing ¢(=) in (6.41) by f ¢(u) du and integrating

from z to infinity. The left side of (6.42) is a oonst.a.nt by a similar pro-
cedure; to evaluate the constant we put z = 0 and use the fact that

[ J' $(u) du] -L J‘ E'l( z) da’ J' $(u) du
ke f $u) du j E(?,-)d—;‘-

%

I
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According to (8.31),

©

i) =-g P(“)En(“/l) du. (8.44)

Using (6.1), (6.41), and (6.42) it can be seen that Y (z) satisfies the integral
equation

ST OB, (640

Combining (6.35), (6.37), and (8.39), we find that, for 2> 1, ¥ (x) is of

the order of e-2, and hence the integral of ¥(x)p(z) over all positive z

converges. On multlplymg both sides of (6.45) by p(x) and integrating,
using the result

(1-A)Y @) = 5p(OEy(zfh) +

[ peX1—)Y (@) = [ ¥eN1—Aypta) d = 0
[ o

(which follows from (6.1) since A is symmetrical and the integrals are
absolutely convergent), we find

£ p(0) f Pl dx + 5D f p@Eafh dz = 0.

Substituting for the first integral from (6.1) and for the second from (8.44)
gives PHO)— (I L{1—0)}5%(0) = 0,
or, since with the definitions used j(x) is negative,

ity = =2d1=9) ), (6.46)

The combination of this with (6.21) gives the value of j(0) in terms of the
asymptotic expression for p(z).
The passage to the limit ¢ —» 1 in (6.46) gives

. 1
[5(0)]pmy = — 5 0p(O)],., (8.47)
This is the same as would-have been obtained by combining (8.38) and
(6.22).

6.4. Milne’s problem in the presence of sources

We now consider the case where there are sources at a finite distance
inside or outside the medium. There are three simple situations which
we shall discuss.
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(i) The case of constant production (§ 6.5), where isotropic neutron
sources are distributed through the half-space z > 0 at constant
strength per unit volume:

8(r,Q) = 8, a constant. {6.48)

(ii) Thealbedo problem (§ 6.8), where a plane source of uniform strength
is situated in the half-space z < 0 and emits neutrons which enter the
plane z = 0 at some given angle. The albedo is the ratio of the current
of neutrons returning across the plane z = 0 to that entering this plane.
In the albedo problem, the number of neutrons per unit time per unit
volume having their first collisions at a distance z into the medium is
clearly (s/uyl)exp(—z/u,l), where s is the current falling on the medium
from the source outside it, and p, is the cosine of the angle between the
direction of the source neutrons and the z-axis. The flux of neutrons
that have had at least one collision is therefore the same as that due to

a system of isotropic sources in the medium whose strength per unit
volume and solid angle at depth « is

8(x) = (sc/dmuyl)e—=ipel, (6.49)

(iii) The ssotropic plane source case (§ 6.7), where an isotropic plane
source of constant strength per unit area lies inside the medium. In this

oase 8(z) = (S/4m)d(z—zy) (x4 > 0). (6.50)

Any system of isotropic distributed sources whose strength depends only
on z can be obtained by superposing sources of the type (6.50). It is,
however, much simpler to consider source distributions of types (i) and
(ii) directly.

In each of these three cases it is obviously sufficient to consider the
solution which remains bounded as z - 0. The more general solution,
in which there is a prescribed supply of neutrons from infinity, is found
by adding to this a solution of Milne’s problem found in §6.1.

Such solutions could be obtained by means of a slightly modified form
of the Wiener—Hopf method, in which the source term appears in the
integral on the right of (6.1), and its Fourier transform is divided into
two functions, one regular in the upper and the other in the lower half-
plane. This procedure would, however, mean re-doing much of the work
involved in the solution of the source-free Milne’s problem. We therefore
try to express the solution of the inhomogeneous equation, with a source
term of the form (6.48), (6.49), (6.50), in terms of the solution of the
homogeneous equation, discussed in § 6.1.
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We shall denote by p(z) and ¢i(z, ) without suffixes or additional

arguments the neutron flux and angular distribution for the source-free
case,

6.5. The case of constant production

For isotropic sources of unit strength uniformly distributed in the
medium, the equation (6.1) is replaced by

) =g [ oo+ B(252]) a, (8.5)
0
where p,(z) denotes the neutron flux in this cuse. With the notation
(6.40) this is (1= A)py(@)+Ye] = Ue. (6.52)
Differentiating and using (6.41), we obtain
d
a=-m2E = [2o0+1] 5. (8.53)
The same transformations applied to (6.1) give
(1— A)d”(”’ 2 PO)E, ( ) (6.54)
Combining (6.53) and (6.54), we find
ldpg() 1 dP(z)} — 0
=)o 0+ "k G =0 (@

that is, the expression in braces satisfies (6.1), and is therefore equal
to a multiple of p(x). Integrating this equality from 0 to z, we obtain

PlE)+l _ pl2) f u) du, 8.56
o0 = poy T | ) (6.56)
where g is some constant, which is determined by operating on (6.56)
with (1—A) and using (6.1), (8.42), (6.44), and (6.51). This gives

l .
m = g1j(0), (6.57)

where j(x) is the source-free current. Combining (6.56) and (6.57) and
using (6.46) and the fact that j(0) is negative (the current being in the
direction of z decreasing), we then find

1 {LJ(I c)

l
ple) = s = o 0)+ ) f plu) du)—Z. (6.58
[1}
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The condition that no neutrons come from infinity has not yet been
used. It implies that p,(c0) is finite, and this allows us to determine

Pg(0). Substituting p(x) from (6.21) into (6.58) and using the abbrevia-
tion (6.36), we have

plz) = {LJ(‘ Mopy(0)-+sinn %0 Lcosh”‘+"°}+

c|3(0)}

-+ constant+O(e~—24). (6.59)
If this remains finite for 2 -+ co we must have

1
Pe(0) = {(1 Al 1}, (6.60)
and with this value of p (0), (6.58) becomes

k- Lp(z u) du —1|§(0 } 6.61

ple) = sy Lete)— jp() 5O (6.61)
The asymptotic behaviour of p,(z) as z - o is also easily obtained.

The limiting value itself, assumed finite and therefore constant, is from

(8.51) pal®) = If(1—c).

Combining (6.36) and (6.46), we have also

B 1 2L —B) |4
e300 — c‘E{(l—cxcL*-—Lz-t—lz)} ’

and using (6.59) and (6.60) we get, for > I,

_ 1 120 —e)LA—UNE ez el
The angular distribution ,(0, ) of the emerging neutrons is obtained
as follows. The formula (4.16) gives

Y0 p) = %-c—l [Pq(—RIJ») +é] e P dR
o .

=& f [on@)+leMidz (u <0).  (6.63)

Substituting from (6.61) and ehmma.tmg the double integral through
integration by parts yields

L—|pll
YO, p) = i P(x)e““”"" dz,
4l |pj(0)| )
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and comparing this with ¢(0, 1) for no sources we finally have
L1 L+l \
b0 = Sobgio ) = TR o WO, <o) gy
_ fl I’ (0, ') dp’

6.6. The albedo problem

We now consider the albedo problem. Let one neutron per unit area
per unit time enter the free surface from outside at an angle cos~1y, with
the inward normal. If p,(z, u,) is the resulting neutron flux, it satisfies

the equation (1 A)p,(a, o) = (1fugle (6.05)
In this, p,(, p,) includes all neutrons, whether or not they have under-

gone collisions. If only scattered neutrons are included, then the free
term of (6.65) becomes (1/u,)Ae~/kl,

We first determine the albedo y. Since the current vanishes at infinity

(there being no supply of neutrons from infinity), the net current at
z = 0 is by (6.35)

. 1—c [
Ja(0, po) = _l—c f P, o) d2,

)
while the inward current at « = 0 is by the normalization adopted

jd(or P'o) = 1.
The albedo is therefore
i (0 —4.(0, 1-—
y= DOl 112 [ dn (860

)

It is to be noticed that the argument p, of 5 refers to the direction of
the incoming neutrons, not to that of the emergent neutrons.

To evaluate the integral in (6.88) we require the following

Lemma. If ¢,(x) and $o(x) are the solutions bounded at infinity of the

tons
(1—A)pi(z) = gy(2), (1—=A)py(®) = g5(x), (6.67)

where q,(x) and gy(x) are non-negative and ¢ (in A) < 1, then

[ Heae) dr = [ gu@laa) de. - (ee8)

The proof of this lemma is very simple if the integral J $1(z)dq(x) dx

exists. If it doeas not exist, the proof given by Hopf (25) runs as follows.
If qi(z), gp(x), ¢1{x), and p,(x) are all non-negative, then by iterating

(6.67) it is found that their solution as a power series in ¢ converges, and
3805.00 G
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since for ¢ < 1 the corresponding homogeneous equation has no bounded
solution, the solution of (6.67) bounded st infinity will be that given by
the Neumann series, i.e. the power series in ¢. The result (6.68) is then
derived by substituting this solution for ¢,(z) and changing the order of
integration in each term of the series.

Alternatively, (6.69) below can be derived from the optical reciprocity
theorem (4.26).

Puttingin (8.68) ¢,(z) = p,(x, o), $4(x) = py(®)+1/c, and using (6.52),
we obtain ®

2 [ P = = [+ ] s (6.69)
° ° i
%0 that (6.63), (6.64), and (6.66) give
y= 1_.62_1(1~c)(L—l,L°) Oz (6.70)

_fl | l9h(0, ) dp

We now determine p,(, 1,). Proceeding as in § 6.5, we derive from
(6.51) and (6.65) the equation

(1—-npi0, n.)]-*(j—x+$)p.(x. w0+ " Litel) =o.

(6.71)

Since p,(x, io) and p () are both bounded at x = o, 8o is the quantity

in braces in (6.71), and since the homogeneous equation (1—A)p(x) = 0

has for ¢ < 1 no non-trivial solution bounded at infinity, that quantity

must therefore vanish identically. Integrating the resulting ordinary
differential equation and using (6.60) and (6.61) gives

z

P, o) = p,(0, I‘o){e-z/'“l"l' LJ(; —°) IJ(IO)I [dfé:)— %‘—)]e-(z-u)/m’du];
[

or, 'mtegrating by parts and using (6.46),

_ 0, o) L e
Puls o) = "'p(T)o{P(“)— [I-‘-o_l+z] 5[ plu)e~=—vlp ld“}- (6.72)

In order to find p,(0, 11,), we again use (6.68), taking this time -
$1(@) = (@/dz+1/uel)py(x, o) and  $y(z) = py(x)+Ue.
Since, as can easily be shown by the use of (6.41), this ¢, (x) satisfies
(—A)py() = (c/20)p,(0, o) Ey (1),
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this glves

219.(0 F'o)f ( )[pq(x)+[] dz = ( dx+ )p.(w, o) d,

which in view of (6.51) and (6.60) can be Wmtten

(1—c)t
ol

Po(0; o) = f P, pro) diz.
' 0

This last integral has already been met in the derivation of (6.70), and
using that result together with (6.46) we obtain

_ 4 Tpo\ (0, — o)
PO, o) %(1 L) R (6.73)
The final expression for p,(z, 1) i8 obtained by combining (6.72) and
(6.73). The asymptotic expression for p,(x, 1,) is easily found by com-
bining (6.21) and (6.72). Itis
Ps(%s o) _ ol ( 2(L*—1?)
PO, ptg)  L—pol\cLA— LA+
For the angular distribution of emergent neutrons, which we call
P,(0, o — p), we have from (4.16)

2)‘}8—(::#.)/5.*. O(e-=h), (6.74)

Po(0, o > p) = — Po(®, prole el dz (< 0).
4l |p| J

Substituting from (6.72), eliminating the double integral by integration
by parts and using (6.18), we find

L 0,
to Zhid plObal g,

Y0, po > p) = T ;;:'—‘ 5(0)

and then from (6.73)
4 (LApl)(L—pol) (0, wh(0, —po)
0,
Yol 0y o = 1) = —3 e 27(0)
It is to be noticed that (6.75) is such that
$a(0, o = 1) = Y30, —p > — o).
This is to be expected from the optical reciprocity theorem (4.25).

(r <0). (8.75)

6.7. The isotropic plane source case

In this case we again normalize the strength of the source to unity,
i.e. one neutron emitted in all directions per unit time per unit area. Let
x = x, be the position of the source and p (2, ~> ) the resulting neutron
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flux. As we have seen in § 6.4, if the quantity Po{%y ~ x) is known, a
problem with any other source distribution depending only on x can be

solved.t The equation satisfied by p,(2o — 2) is clearly

Pt > ) = & Pa(xo"x')Ex(li_l—:ﬂ) dx’HEx('—"“T""). (8.76)
[

while according to the optical reciprocity theorem

Py(To > 2) = Po(® — ), (6.77)

so that it is sufficient to solve (6.78) for x > z,, for instance. First, let
%y = 0, i.e. the plane source coincides with the free surface. On com-
paring (6.76) with z, = 0 with (6.53) and using (6.60), we see that
£,(0 - z) satisfies the same equation as (1—c)idp,(x)/dx, and since both
these quantities are bounded at infinity

P0—>2) = (1 —c)idp,(x)/dz. (6.78)

Ifnowz,>0and z > %y, the flux can be written as

EX
Pota > 2) = p,(0 > Z—ig)— f %[p,(x,,—u >z—u)]du. (6.79)
(1]
The equation (6.76) gives

Po(@o—u ~> z—u)
«©

= 2% Po(®o—u > :c’—-u)E,(li_;i'l) dx’+§El(@),

and differentiating this with respect to u we get

At e1= [ s ainfE ) ar

- ’292”0(“’0"“ - O)E'l('x;ul),
which shows that the quantity

l 1 )

T e 0) BalPelFo—u > 2—u)]

satisfies the same equation, and the same condition at infinity, as

t That is, p,(z¢— ) is the Green’s function for Milne's problem with sources.
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Py(0 = 2—u). These two quantities are therefore equal. On this account
(6.79) gives

Py(To — ) =}p,(0 > T—x,)+
o
+§ f Po(To—% = 0)p,(0 - z—u) du (x > z,), (6.80)
o ,
and combining (6.77), (6.78), and (6.80) we have finally

min(z.ze)
pale>2) = (—epifla—2e)+ 52D [ iyt oz ay,
[

(6.81)
where y has been substituted for Zo—u, and the formula has been rewritten
80 a8 to be applicable whether or not z > Zo.

The result (6.81) is due to Placzek (15), but the proof given here is by
Elliott (19). The quantity — (2/6u) py(zo—u + x—u)] du may be inter-
preted as the contribution to Py(xy — x) from neutrons which, in migrating
from the source to the point z, at some time reached a distance » from the
surface, but came no nearer to it. The proof is therefore equivalent to
the calculation and summation of such contributions,

The angular distribution of emergent neutrons y,(z, - 0, ) in this
case is obtained from (4.16), (6.65), and (6.7 6). We then have

(1—=Ag )@ > 0, p)

= Z'T;TIJ-I (1—-A,;) f [p,(xo > z)4 é S(z—xo)] e~*pl dx
0

—_ e—xlull < 0),
prm (v <0)

and hence (2o > 0,p) = (1/4m)p, {2y, [1]) (p < O). (6.82)

6.8. The isotropic point source case

The sources considered hitherto have been of strengths which depended
only on the distance from the boundary of the medium. We now consider
a point source; the solution for any source whose strength depends on
the lateral distance can be obtained by superposition if the point source
solution is known.

The general solution is difficult, but Elliott has carried out the analysis
for an isotropic point source on the free surface of a non-capturing half-

space. We shall give the main results here; further information may be
found in Elliott’s report (17).
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The method employed by Elliott was to use the polar coordinates
z,r,0, where z = 0is the free surface, the z-axis passes through the source,
r is measured from the z-axis, and 6 is the azimuthal angle, the solution
required being independent of §. The Bessel transform of (4.15) is taken,
putting

F(z,8) = f pl@, ) y(ra)r dr, (6.83)
[}

where Jy(rs) is the Bessel function. This leads, for every g, to an equation
for F(x, s) as a function of z which is of the same form as (6.76), and can
be solved by the same methods. The transform (6.83) is then inverted.
The result for ¢ = 1 (no capture), z, = 0 (the point source on the free
surface), and 2242 3> I# (i.e. for large distances from tho sourco), is

padenr) = 3ol B0 | 5159 l————’ﬂ(}ﬁs“’HO(%) +

R2

p(x)—(2+20)p’ ()] .
+L el o zﬂ)}, (6.84)
where R? = 34 (2-42,)%, w = tan-Yr/(z-+z,)}, P, and P, are Legendre
polynomials, p(x) is, as before, the solution of the source-free Milne’s
problem (§§ 6.1, 8.2), z, = 0-7104! is the extrapolated end-point, and ¢
is the number of neutrons emitted by the source per unit time.
The neutron current at the free surface, and the extensions of (6.84)

for small capture and the source inside the medium, are also given by
Elliott, but we shall not quote these results.




VII
THE CASE OF TWO ADJACENT HALF-SPACES

7.1. The extension of the Wiener-Hopf method .
THE analysis given above for the case of a medium ocoupying a half-
space when the other half-space is a vacuum can easily be extended to
the case of two adjacent half-spaces, provided that in both media tho
scattering is isotropic and the constant cross-soction approximntion
is justified. In this case the properties of each medium are specified by
the values of [, the mean free path, and ¢, the mean number of secondarios.
We use the subscript 1 for the medium in the half-space z > 0, and 2
for that in z < 0.

We first consider the case of no sources at a finite distance. Since I(r)
now depends on the position, we should start from (4.15) rather than
(4.15). However, if the quantity ¢ is introduced, defined by

E=zll (z>0), =afl(<0), (1.1)
then, for the particular dependence of I(r) on r in question,

m(r,r’) _ §=¢

= , 7.2
| — =% (7.2)

and so, assuming again that p(r) depends only on z, we can integrate
(4.15') over the planes z' = constant, using ¢ as the variable of integra-
tion, and obtain

© 0
o) =3 [ EVEGE—E D +F [ pEIBUE—ENdE. (13)

[ -0
The quantity ¢ defined by (7.1) is calledt the optical depth. More
generally, when the mean free path depends only on one Cartesian co-
ordinate (z, say), the optical depth of r is defined as the optical distance
(see (2.39)) between r and its projection on a fixed plane x = constant,

with the appropriate sign.

The form of (7.3) shows that in the plane case (when all quantities

depend on z only), the manner of dependence of ! on = does not affect the
solution as a function of optical depth.

t Cf. footnote in § 2.6.
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The solution of (7.3) can be obtained in the same way as that of (6.1),
Putting o 0

Filp)=[evp)d,  Fgp)= [ewipe)ag,  (r4)

[} -

then as in (6.4) we find

Fio1—22) = _pgp) (1—a28), s
and then put as in (6.6)

p+1 (l__ctan-lp)=hl+(p>, 1 (,__ tan"p)Ji* (p),
PRI\ TV p hi(p) pBLE hy (p)
(7.8)

Here L, and L, are the diffusion lengths in media 1 and 2; A} (p) and
ht (p) are regular and non-zero for im ? > 0, and tend to unity as |p|
tends to infinity in this half-plane, while ki (p) and ks (p) have the same
properties for imp < 0. The expressions for ki (p), etc., bave been
given in (6.9), apart from the units in which 2 is measured. Continuing
a8 in the derivation of (6.14) we find

;43 (2) p(0)(p—p0) = ;23 (P) p(0)(p—po)
F+ =3 t ] 0. y F = —1 3 0 ,
W= oy Ta0 =it AEL
where p, is & purely imaginary constant. If p(—o0) = 0 but p(c0) % 0
(that is, if all the neutrons come from z = -+00), then p, = —il,/L,. In
the converse case, p, = il,/L,. Finally, p(£) is obtained by applying the
Fourier transform inversion formula to (7.7).

7.2. The asymptotic behaviour of the neutron flux

The most important application of the analysis of this section is to
establish a relation between the asymptotic behaviours of p(¢) when
§ > +ooand £+ —o0. If, as in (6.38), we put
P(E) = pual€)+O(e18), (7.8)
where py,(£) satisfies
pu(f) _ {(l{/L{)-P..(E) (€>0) }’

agt (12/L3)-pusl€) (€ < 0)
then this relation can be conveniently expressed as

Paa(0—) = GooPas(04-)+ GmWPu(f)/df]E-w }’ (7.9)

[dPu(f ) df]f-o- = Gyopus(0+ )+ Gu[dPu(f )¢ ]f-o+
where the coefficients G, eto., may be determined as follows. Let 6 be
the proportion of the flux at the interface, p(0), which is due to the supply

(7.8
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of neutrons from £ = +o0 and 1—6 that due to the supply from § = —co0,
Then the constant p, in (7.7) is equal to

[(1—6)(4y/ Ly)—6(%y/ Ly)),
and continuing as in the derivation of (6.18) we have for £E>0

_ Lyl\hi (i, /L) s
put®) = pO) 391+ G D) .

L, l\Vhs (—i,/L,) .
1— 0(1 ll:)] st g L*}, 7.10
+1-wf+ 2 S, ao
and a similar expression for § < 0. The quantities h (i, Ly), ete., can
be found from (6.9), and then the coefficients Gy oto., are known. For

the case when both ¢, and c, are close to unity, the result is, putting (7.9)
in & more symmetrical form,

Fapea0—) = W pua0-+)—0-204(c, —c? [%2‘5—’] E_M} x

X [14+ 01— e%) -+ O((1—cp)¥)),
deaa]  _ pl[es] 051006 —
W,[ o ]f_o_ vli{[,hf]e_o+ 0-510(c, c,>=p..(o+>}x
X[1+0((1—e ) +0((A—cd¥)], (7.11)

where for brevity we have put

_ Lyfee, L3+B—LY1% .

Since by (5.5) these W, are given by
2
W, = 7}1 (1—e¢,{1+0-309(1—¢,)*+ O[(1—¢, 2]}, (7.13)
on neglecting terms of order (1—c,)? and (1—c,)* we can rewrite (7.11)

as
(L3/B)(1—c5)paa(0—)
= (LYR)(1—c,)paa(0+)[14- Ol —e D)%)+ 01 —epdY)),

L3 1. \[dpas(f)
E(l c’)[ d¢ ]£=o-

4 dpas(£) _
= 0o 28] roi—eyn+oa—ay)

(7.14)
Using (6.37) and defining ju(£) separately in each medium, as was done
for pu(£) in (7.8"), the second of (7.14) can be put in the form

Ju(0=) = jusl 01+ O(A—eDN+OL—c)].  (1.16)
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The discontinuity of ju,(£) is therefore a small quantity, of the order of
1—c¢, compared with that of p,(£). This could have been foreseen as
follows: the actual neutron current j(£) is, like the actual flux p(£),
continuous at £ = 0. If ¢, and ¢, are close to unity, we see from (6.35)
that the relative deviation of j(£) from j,e(£) is much smaller than that of
p(€) from py(£), and (7.15) therefore follows. Also, by (6.35), dj(£)/d¢
is continuous at § = 0, while from (7.3) dp(£)/df has a logarithmic
singularity there if ¢, # ¢,.

7.3. The angular distribution, flux, and current at the interface

We now consider the angular distribution, flux, and current of neu-
trons at the interface x = 0 between the two media. These will naturally
depend on the asymptotic behaviour of p(£) as £ > 400 and £ > —co0.
We restrict ourselves to the case when no neutrons are supplied from
z = —00, i.e. p(—00) = 0, and first determine for this case the relation
between py(£) for £ > 0 and p(0). This is directly obtained from (7.10),
gince by combining (6.11) and (5.5) we derive

+ +f i 261—Cq -1
m (g (- 1) = 5257 oo
Assuming ¢, > ¢, and using (8.20) and the fact that p(—o0) = 0,
p(+0) # 0 (ie. § = 1), we find
- cy—cq  2(L3~—13) \}.. . EL+z,
Puslf) pw){ Ty +l,} sinhEE5 ¢ > 0), (1.10)
L, Ly 1+ L, 1, ki (34 L,) hf'(—iZI/Ll)}
where 5, = Hlog| P e

If ¢y > ¢,, then in order to avoid complex quantities in the final result
(7.16) should be rewritten

- cg—¢  2(Li—-h) }i‘ £l +% '
Pas(é) = p(O){ o o L-Li+h cosh I (€ >0), (7.186")
where the definition of Z, is obvious. For ¢, < ¢;, the quantity z, can be

described as the extrapolated end-point of medium 1 in the presence of
reflection by an infinite half-space of medium 2. The calculation of z, can
be carried out like that of z, (see formula (6.26)).

By a slight modification of the argument of § 6.3, assuming again that
p(—o0) = 0, we find that the current at the interface is

(1.17)

3(0) = -—ﬂ:&,’:—‘ﬂ’p«». (1.18)
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The modification in question is that the operator A is now defined by
. e 0
296 = 2 [ $ELe—ndn+ 2 [ pmB(le—n)dn, (1.19)
0 -0

and since this operator is not symmetrical, whereas c(r)A is, the equation
corresponding to (6.45) should be multiplied by ¢(r)p(£), and not by p(£)
only. Otherwise the proof is as before.

We denote the angular distribution of the neutrons at the interface by
Yn3(0, u). An inspection of the formulue (7.7) and (6.17) suggests that
this could be expressed in terms of the emerging angular distributions
in the ordinary Milne’s problem for media 1 and 2. Let ¥4(0, ) bo the
emergent angular distribution (4 < 0) when medium j occupies the half-
space > 0 and the other medium is absent. Using (4.16), (7.4), and
(7.7), and assuming that p(—o0) = 0, we find as for (6.17)

_ CPO) Af(ifp) 1
| b0 ) = == 7 Glp) TFAliL, (v >0)
and . (7.20)
_ 61p(0) hf (—i/p) 1—ply/Ly
$12(0, ) = dr hF(—ijp) 1=/ (e <0).
By direct application of (6.17), we have for (0, ) and (0, u)

_opl0) 1 1—p .
‘/11(0’ /"‘) = ’4{” hf(—i:/}t) l—yzl;/L} (.“’ < 0’.7 = 1!2)0 (7'21)

where p,(0) is the flux corresponding to the angular distribution (0, ).
The combination of (7.20) and (7.21) gives
0,u) = £(0)p,(0) 28 1—ply/ Ly (0, —p) >0
al0 1) = =y T Tl LR 0, =y >0
and . (1.22)
0)ps(9) ¢ L YD)
0,u) = p(0)py S 1 <0
WOR == 0 oL b ¢ <Y
The expressions for p(0), j(0), and ¢,,(0,) for the case when the
neutron supply comes from { = —co [p(—0o0) 5 0, p(00) = 0] are ob-

tained similarly, and the solution for the general case is then obtained
by superposition.

4
7.4. The effects of sources )

We finally examine the effects of sources in a system of two semi-
infinite media. We shall, however, consider only two types of source:
constant production in one medium, and a plane source parallel to the
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interface. The analogue of the albedo problem has no direct physical
significance here, while the problem of a point source has not yet actually
been solved, although the principle of the solution is obvious.

For the case of constant production in medium 1 (¢ > 0), we normalize

the source strength per unit volume to unity as before, and then the
equation satisfied by the neutron flux is

@® . []
pe) = 3 [ [oe+ 2] Btk —aD) an +2 [ peiBill6=n1

0 -

or, using the operator A as defined in (7.19),

- = [W1-3B0)] (6> 0) }

a-nre =5 620)

The factor I, is explained by the fact that the unit of volume in z-measure
is 1/1, times the unit volume in ¢-measure. It will not, however, appear
in the case of a plane source (see equation (7.28) below), as can alter-
natively be found from the transformation properties of the delta.
funotion. '

With A given by (7.19), the formulae (6.41) and (6.42) become

(1.23)

d dd(f) _ e;—c
&A¢(§)—-A o= =5 $O)E(I¢)),

and

£ £
J 1agman — [ gt an
L] [

] 0
= —3 [ #Bm g 42 [ #nB—man. .20
1] —c0

Proceeding now as in the derivation of (6.56), i.e. comparing
(1—A)py(£) with (1—A)p’(£), where p(£) is the solution of the source-free
equation (7.3) which vanishes for £ = —oo, we find

¢
(cr—edpgl)+h _ 1 |
@—eaeo(0)+h “p<o>{f"f>+9ofﬂ<n> dn}. (7.25)

and operating on (7.25) with (1—A), we obtain

g = 2(0) L(1—ec,)

70) ler—capg 015’ (7.26)
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since the current at the interface in the source-free 6ase is

93

[ 0
30 = ~2 [ pn) dn+3 [ o)
0

Since, if p (£) is bounded for § >+, g = —1,/L,, we have by (7.18)

All the constants in (7.25) are therefore known, which gives Po(€); 5,(0)
and ¢,(0,1) can then be determined as before. This completes the
solution for the case of constant production.

In the case of a plane source of unit strength per unit area, the equation

is
polbo>€) =1} f cl€')pylbo > £V EL(IE—£']) dE' +1E,(I€,—¢]), (7.28)

where c(¢’) = ¢, for¢’ > 0and = ey for ¢’ < 0; by the optical reoip.rbcity
theorem, polo > ) = pyl€ > &), (7.20)

For ¢, = 0, we obtain by comparing (7.28) with the equation for
dpy(€)/dE (see (1.23), eto.)

pil0 > £) = &'gl(i%o_l L3 (7.30)

The coefficient of p)(£) is not symmetrical in the suffixes 1 and 2 because
the definition of Po(€) is not symmetrical in them.

Rewriting (7.28) as an equation for Po(éo—mn — £—n) and differentiat-
ing with respect to %, we find as in the derivation of (6.80)

syl =] =] [ oA —~) 5= Logtba— 1> €' — ) (I ) —

- (Cx‘z_cs)P’(fo_.,l - O)El(lf_n[), (7.31)

and therefore

%[P,(fo—n >E—)l = —(a—cdpylbs—n > 0)p,(0 > —7). (7.32)

Integrating (7.32) and using (7.30) we obtain Polo — ) for |£] > |£,],

and on using (7.29) this formula can be immediately extended to
6ol > 1€].



VIII
THE DIFFUSION APPROXIMATION

8.1. The basic ideas of diffusion theory

In the last three chapters we have discussed the exact solutions of some
simple problems. In more complex cases, the exact solution, even if it
could be obtained at all, would be too complicated to be of any use. It is
therefore necessary to consider now approximate methods of solving
problems of neutron transport.

" The simplest of these methods is based on the conclusion of § 5.4, that
in a uniform isotropically scattering medium in which the constant
oross-section approximation is applicable, the exact solution for the
neutron flux can always be represented in the form

. P(T) = pay(F)+pelr), . (81)
where p,,(r) satisfies the equation
Vipaa(r) = pay(r)/ L3, (8.2)
or V2pee(r)+K2pae(r) = O,
where x = 1/iL and is used when L is imaginary, and
pu(r) = O(e~h), (8.3)

where d is the distance of the point r from the nearest source or boundary
(see (5.38), (6.39), and (5.4)). (Cf. also the footnote at the end of § 5.3.),

If now the geometrical dimensions involved are large compared with
the mean free path, then except in the neighbourhood of sources and
boundaries p, (r) in (8.1) can be neglected in comparison with p,,(r).
That is, the solution of the integral equation (4.15") can be replaced by
that of the differential equation (8.2). Because of the similarity of equa-
tion (8.2) to that of thermal or chemical diffusion, this approximation is
called the diffusion approximation.

In order that the solution of (8.2) shall be determinate, it is necessa.ry
to specify the boundary conditions, and since at the actual boundary of
the system p,,(r) cannot be neglected and equation (8.2) does not hold
for the actual flux, this requires some care.

Suppose, for instance, that it is desired to determine the critical
thickness of a bare infinite plane slab of slightly multiplying material,
ie.c>1,¢—1<£1 and 8o 1/x> . If the critical thickness is 2a and
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the midplane of the slab contains the origin, then from (8.1)-(8.3) we
can write p(x) = A cos kx+ O(e~a-2R) | O(e—~a+aM), (8.4)

Using for tho moment a crude boundary condition such as equating the
first torm of (8.4) to zoro, we seo that ¢ will be comparable with 1/x, and
since 1/ > 1, =24 will be extremoly small. In the neighbourhood of the
boundary x = g, the third term in (8.4) can therefore be neglected, and
this is equivalent to replacing the slab by an infinite medium z < a,
which contains a neutron flux stationary in time and asymptotically
periodic in space. The latter problem has been considered in §§ 6.1 and
6.2. (The argument in those sections related to the case ¢ < 1, but this
restriction is inessential and was made only to avoid the appearance of
negative neutron densities in what was there part of the system.)

It is known that, in this infinite medium problem, Pas(x) satisfies the
conditions p,,(a+2y) = 0 and p,,(a) = —Apya(a); see (6.23) and (6.24).
Thus we can say that in the slab p,,,(x) (as we shall henceforward call
the solution of (8.2)) should approximately satisfy the boundary condi-

tion Patela+z,) = 0, (8.5)
or, what is the same thing,

Paut(@) = —Apyp(a); (8.5)
and similarly, for 2 = —a, the condition

Pan(—a—z) = 0 or Paitr(—a) = Apye(—a).
The critical half-thickness is therefore given by @ = 7/2k—z,.

The conditions here derived are approximate because the mutual
interference of the two boundaries has been neglected, though if a > 1
this neglect of the interference is perfectly justified.

The general procedure envisaged in the diffusion approximation is
this: for each kind of boundary, the simplest possible problem involving
that kind of boundary is solved as exactly as possible, and at least without
using the diffusion approximation; the conditions actually satisfied by
Pas(r) at the boundary in question are thus found. In more complex
problems, the interference between different boundaries is neglected, and
in solving (8.2) the boundary conditions determined from these simplified
problems are used. Of course, cases arise where this plan cannot be
strictly followed, and then the boundary condition must be guessed.

It is also necessary to remark that, though the value of ¢ in the system
docs not enter directly the ecriteria of applicability of the diffusion
approximation, in practice the dimensions of the system will usually be
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' of the order of L or 1/x, and this effectively limits the application of the
theory to systems where |1-—¢| is small.

8.2. The problem of spherical systems

The analysis of Chapters VI and VII is adequate for the determination
of boundary conditions at plane surfaces. In the case of spherical
boundaries, a very convenient simplification is afforded by a property of
spherically symmetrical systems; namely, that if in such a system the
mean free path is independent of position and the scattering is isotropic,
then the determination of the spherically symmetrical neutron distribu-
tion in the system can be reduced to the determination of that in a certain
system with plane symmetry. This result is rigorously true, whether or
not the constant cross-section approximation is applicable, but for
simplicity we shall prove it only in the latter case.

Let r be the radial coordinate, c(r) the mean number of secondarics
per collision at distance r from the centre, and p(r) the neutron flux. The '
equation (4.15) can be written

plr) = Zﬂl"l J' f f ofr' ol Je-te-en Y (8.6)

jr—r'|¥’
r<a

where a is the outer radius of the system, finite or infinite. On integrating
over angles, since dV’ = r'? dr'dud4, say, where p = (r.r’)/rr’, 50 that

dplle—r'| = djr—r'|rv, (8.7)

o) = o ‘[ ot oo B L5 ) - B(4)  ar,

or, extending the definition of c¢(r) and p(r) to » < 0 by putting
e(—r) = ¢(r), P(_') = p(r),

we find

rp(r) = :217 f c(f’)r’p(r’)El(lr_;r' I) dr'. (8.8)

This can be identified at once as the equation governing the neutron
distribution in an infinite slab of thickness 24, where ¢(r) is the number of
secondaries per collision at distance r from the midplane, and rp(r) is
the neutron flux, This completes the proof. Unfortunately, the result is
no longer valid for anisotropic scattering or mean free path varying with
position.

In the application of this result to find spherically symmetric solutions
of (8.8), it is necessary to notice that, with our definition of p(r) for
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r <0, 7p(r) must be an odd function. Only the eigenfunctions of (8.8)
which are of odd parity will therefore be relevant; the lowest eigen-
function of (8.6) will be given by the second one of (8.8), the second of
(8.6) by the fourth of (8.8), and so on.

The above result makes it possible in many cases to formulate the
boundary conditions to be used in the diffusion treatment of problems of
spherical symmetry. For instance, for the case of a bare homogeneous
sphere they can be found from those for a bare homogeneous slab, which
we already know, and we also know the order of magnitude of the error
committed in using them. The boundary conditions at the free surface
of such a sphere become

Pair(a--2o) = 0 (8.9)

pante) = - Arand)] (8.10)
r~a
if we use (8.5’); in either case, the error will be of the order of e~ which
is completely negligible if a > 1.

In the case where the sphere consists of an inner homogeneous core
of radius b surrounded by a reflector of thickness a—b, both having the
same mean free path, the same arguments as before will lead to the same
boundary condition (8.9) or (8.10) at the outer surface, but now the
error will be of the order of e<@-®, This in fact holds whether or not the
mean free path is the same in core and reflector, since it is obvious
physically that a change in the core material cannot affect the conditions
near the surface of the reflector except by quantities of the order of
e~a-t, This conclusion can be verified mathematically by caloulating
the analogue of (8.8) for b << r < a; the result is identical with thas for a
slab containing sources whose strength is of the order exp[—(r—b)/1],
and these sources cannot affect the solution near r = q by more than
the order of exp[—(a—b)/l].

if we use (8.5), or

8.3. The boundary conditions at a free surface
—* Weshall now summarize the boundary conditions which are at present
believed to be the correct ones for use in the diffusion approximation.
Some of these will be the result of direct application of the above calcula-
tions, others will be guesses that are only indirectly supported by
calculation.
If the boundary condition at the free surface is taken in the form
(8.5) for the plane case and (8.9) for the spherical case, We notice that

these are of the same form. In fact, the form of (8.9) is independent of
359590 H
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the radius of the sphere, and this leads us to suppose that the extra-
polated end-point for any shape of surface will be independent of the
actual shape; that is, for any non-re-entrant surface the boundary
condition can, to a reasonable approximation, be put in the form:

Paie(r) vanishes at a distance z, outside the actual surface of the medium.

(8.11)

The form (8.10) of the boundary condition, on the other hand, involves
the curvature of the surface, and consequently the extension to arbitrary
shapes of boundary surface is more uncertain.

The question sometimes arises as to the proper form of the boundary
condition at a sharp edge, such as that of a cube or a finite cylinder. In
this case, it is usual to form a larger cube or cylinder whose dimensions
each exceed those of the actual body by 2z, (that is, 2, at each side). At
the sharp edges, py.(r) will then vanish at a distance v2z, from the
surface, rather than z,, and this may appear to contradict (8.11). There
are, however, two considerations to be borne in mind. Firstly, at the sharp
edges p,(r), defined as above, will behave as the square of the distance
from the edge, not as the first power, and so the effect of the deviation
from (8.11) will be negligible if the dimensions are 3> z, (and otherwise
the diffusion approximation is unjustified). Secondly, (8.11) is based

on the study of plane and spherical systems, and cannot be regarded as
necessarily accurate for sharp edges.

8.4. The boundary conditions at an interface
In the case of a plane boundary between two media, where the flux
does not vary laterally, the formulae (7.14) and (7.15) show that, what-
ever the mean free paths in the two media, provided that the values of
¢ are not very different, the best boundary conditions available are
(L2/B)(1—c)pgi(r) continuous (8.12)
and Jaie(r) continuous. (8.13)
These conditions are, however, not the result of exact calculation, but
only an approximation to it. To derive the best possible boundary

conditions would require a tabulation of the G, in (7.9) for a wide range
of ¢, and c,, and this is not yet available.

The arguments of § 8.2 show that the same conditions can be applied
to the spherical case, provided that the mean free path is the same in
the two media. The diffusion approximation for the current is now to

be taken as Jan(r) = (Lh)(c—1)grad pye(r), (8.14)
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which is a direct generalizationt of (6.37) and is, of course, evaluated
separately for each medium.

Since, when the mean free paths are the same in both media and the
mean numbers of secondaries nearly so, the conditions (8.12) and (8.13)
are applicable to both plane and spherical interfaces, we may suppose
that the same is true for other shapes of interface.

No exact caleulations are available for the case of differing mean free
paths, and so one would normally continue to use (8.12) and (8.13). If
¢ is close to unity in both media, then (6.34) shows that (8.13) at least
cannot be seriously in error.

The presence of a lateral variation of the flux, which has been neglected
hitherto, will not influence the boundary conditions to any great extent,
since the tangential components of grad p cannot appear, by symmetry,
and the second derivatives of p in tangential directions will be at most
of the order of |c, I2/a®—c, 3/a?|, where a is some characteristic geometrical
dimension, and this is,commensurate with the likely error in (8.12). This
also implies that, in the case of lateral variation of the flux, the condition
(8.13) must be taken to imply the continuity only of the normal com-
ponent of jyp(r). The continuity of the tangential component will bo
ensured by (8.12) if the mean free paths in the two media are the same,
while, if they are different, there is no reason why the tangential current
should be continuous. :

If only the critical size of the system is of interest, and the constant
cross-section approximation is used, then (8.14) shows that the condi-
tions (8.12) and (8.13) are equivalent to the simpler ones

Paire(r) continuous
lgrad py,(r) continuous |
These can, of course, be used only in the conditions stated, for, unless ¢
is the same for both media, the second of (8.15) means that more neutrons
come to the interface than leave it, or vice versa, in some direction. It
is impossible to use (8.15) when there are sources in one region and the

(8.15)

t The derivation of (8.14) is as follows: in (6.34), p(r) and j(r) are replaced by their
diffusion approximations, and the result is applied to a source-free region in one of the

media, giving
ffjdm(r).dAnf—:—lfff paslr) dV.
¥

4
Substituting from (5.4), this is

{f Jain(r).dA = I_)(cl_-—_l) J-fj div grad pga(r) dV
A v

since V! = div grad, and (8.14) follows by Gauss'’s theorem.
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* number of neutrons escaping from or captured in another region is
" required. This is particularly so when the strength of the sources in a
- Tegion depends on the capture in another region, as often happens in
* multi-group theory (Chapter XIX).

" 8.5. Black bodies

. In dealing with thermal neutrons, it may happen that a very strong
' absorber, such as cadmium, has been introduced into the medium, and
. that the chance of any neutron entering the absorber and escaping
capture in it can be neglected. Such absorbers are called black bodies.
- The effects of such bodies on the neutron distribution, and in particular
~ the boundary conditions to be applied at their surfaces in using the
diffusion approximation, have been studied in detail, and we give here
the principal results.

If the extent of the black body is very large compared with the mean -
free path in the surrounding medium, then its surface may clearly be
regarded as a free surface, and the condition (8.9) or (8.10) may be used.
If, on the other hand, its dimensions are small compared with the mean
free path, then the boundary conditions can be derived by the following
argument.

Suppose for simplicity that the medium is infinite and non-capturing
and has no sinks at infinity. In the absence of the black body, the only
posaible solution for the neutron flux would be p(r) = constant = p(0),
and so the angular distribution would be

¢(r,2) = constant == p(co)/4s. (8.186)

If the dimensions of the black body are small compared with the mean
free path, its effects on the angular distribution will extend over only a
fraction of a mean free path. A neutron entering the black body, however,
will have come from a distance of the order of one mean free path. The
angular distribution of entering neutrons will therefore still be approxi-
mately given by (8.16), and so, if the black body is convex without
sharp edges, the current at a point a of its surface will be

0 i
j@) = [[ERgao O [ 4, gy 2 g1y
]

We now consider some volume V enclosing the black body, and so large
that the diffusion approximation is valid near its surface. Since the
medium is assumed non-capturing, the net current of neutrons into ¥
(i.e. the current integrated over the outer surface of V) will equal the
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total current into the black body, whether we use the exact solution or
the diffusion approximation. In dealing with a non-capturing medium,
therefore, the diffusion approximation to the current at the boundary
can always be taken as identical with the correct current there. This is
always valid on the average, and the more symmetrical the body, the
more accurate it will be. The formula (8.17) thus gives j y0(2) also, and
combining this with (8.14) we have

lgradpy(r) = §p(c0) for r =a, (8.18)
since L*1—c)/l* = —} when ¢ = 1.

It remains to make (8.18) suitable for application by eliminating p(c0)
in favour of p;.(a). For a non-capturing medium the equation for
Paier(T) i8 V3pgu(r) = 0, and the solution of this equation possessing the
required value at infinity and satisfying the boundary condition (8.18)

is clearly Passe(T) = p(co)[1+O(ad/rl)].

We take the value of this expression for r = a and combine it with
(8.18), using the definition of the linear extrapolation length (6.24) and
the assumption ¢ < I, obtaining finally

A==§l fora £ 1. (8.19)

It is to be noticed that this derivation does not use the true value of
the neutron flux at the surface of the black body; in fact this is not
possible, as there is no simple relation between p(a) and Pais(a). However,
a8 we have seen, (8.18) in any case contains all the information that the
diffusion theory is capable of utilizing,

The above derivation presupposes that the black body is of small
extent in at least two directions, and finite in all three—the last condition
is needed to ensure the finiteness of p(c0), as may be seen from the
discussion of a line source in§ 5.5.1. However, supposing the black body
to be small, for instance, in the directions of x and y, and of finite extent
A in the z direction, we see that h does not enter (8.19) explioitly, and so
88 b~ oo the result (8.19) should be applicable also to such bodies as an
infinite oylinder of small radius. Further, although we have assumed
that ¢ = 1, it is clear that these results will hold also for ¢ # 1, provided
that [c—1] <€ 1. .

Wethus know the value of the linear extrapolation length for very large
(8.10) and very small (8.19) black bodies. Since A must vary monoto-
nically with the size of the body, it follows that for any black body A will
lie within the limits 07104 < A < s
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the actual laws of the variation of A/l with a/l for a black sphere and a
black cylinder have been examined for a non-capturing medium by
Marshak (35) and Davison (12). The results are shown below. We
_ehall later describe some of the methods used by theso authors, though
not in application to this particular problem.

i 1 Il
0 1 2 3 4
st 3 5

Fia. 8. A, black sphere; B, black cylinder, '

. 8.6. Cavities and gaps
~ 8.6.1. Cases where the presence of cavities has no effect

We finally consider the boundary conditions at cavities and gaps.
These will include the surfaces of re-entrant bodies, and those of sub-
systems which are exposed to neutrons from other sub-systems.

In two situations, the presence of a cavity or gap is without effect.

. Firstly, if there is a cavity of any shape in a non-capturing medium, and

the conditions at the outor surfaco or at infinity are such that p(r)
' == constant would be a solution in the absence of the cavity, then it is a

. solution in the presence of the cavity also; for in this case the expression
* for the angular distribution becomes

—— p -7 -
wr @) = £ f e~ -2 G R,
0

~ and the numerical value of this is unaffected by the presence of the
. cavity.
Secondly, if there is plane symmetry (in which case the gap must take
" the form of a plane slit), the solution, if dependent only on z, can be

expressed in terms of the optical depth alone, eliminating the geometrical
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coordinates. Since the optical thickness of the gap is zero, the result
follows.

8.6.2. The case of a plane slit

We next consider the case of a plane slit when there is lateral variation
of the neutron flux (that is, over the surface of the slit), It is assumed
that the number of secondaries per collision in the media on either side
of the slit is close to unity, so that the diffusion lengths are large compared
with the respective mean free paths, and it is also assumed that the
lateral variation of the neutron flux over one mean free path is small.
This latter assumption presupposes that there are no localized sources
or other irregularities near the slit.

Let the coordinates be chosen so that the surfaces of the slit are
z == 0 and z = h (say), and let the components of  in the directions of
z, ¥, and z be respectively (1—pu2)icosd, (1—pu?)ising, and p; with this
convention, we now write {i(r,Q) as Y(x, y, 2, 1, ). We first evaluate the
z-component of the current j,(z,¥,0) at a point (x,y,0) on the lower
surface of the slit. The direction of a neutronis given for x > 0by stating
the values of u and ¢, and for u < 0 by stating the coordinates z’ and y’
of the point where it meets the upper surface of the slit. Within the slit
the Boltzmann equation is §.grady = 0, and hence, 80 long as r— R
is within the slit, $(r— R, Q) is independent of R, Since dQ = dud¢,
while for neutrons crossing the slit

p=—hlp
and  dudé = hda'dy’[p®, where p? = h2+(x—2' )2+ (y—y')3,
we find from (4.6)

1 o
jl(xr Y, 0) =, f M dl" f ‘p(xr Y, 0, Hy ¢) d¢—
0 0

_f J' s “;”" dy';p(m’,y’,h,—-%,ta.nﬂ%%). (8.20)

This formula is so far exact. To apply it to the diffusion approxima-
tion one usually proceeds as follows: j,(z, y, 0) is identified with ] y.((x, %, 0)
and the quantity a,(r,2) is introduced, defined by

Va2 = - [pan(e)+32 S (0] (8.21)

and the values of y(r,S2) appearing in (8.20) are approximated by
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" $an(r, ). On performing the integrations over . and ¢ and rearranging,
we have

, *Pdl!!(xn Y 0)_ijd.M(z» Y, 0)
_r f f panl(®, Y, h) dz'dy’  3h3 J‘ J‘ Jaue@',y', b) da'dy’

4 pt drr P :
- A similar expression is obtained for the point (z, y, h); this we call (8.22").
. In the above expressions, Jaie 18 understood to be the z-component of

Jar, and the other two components are assumed to be zero,

The approximations used in deriving (8.22) may be justified as follows,
assuming that the variation of the flux in a lateral direction is negligible
- over one mean free path. The dependence on the azimuthal angle of the

* angular distribution of neutrons entering the slit should be negligible,
. and so should the lateral components of the current up to a few mean
free paths into either medium; the lateral components of j,,,(r) at the
- surfaces of the slit can therefore also be neglected. The neglect of the
" difference between the normal components of j(r) and j,(r) may be
justified by arguments similar to those used in connexion with (7.15).

The main error in (8.22) therefore arises from approximating y(r, u),
which equals (1/2n) [ Y(r, 12, 8) dg, by (T, p) at the surfaces of the
slit. The magnitude of the error can be estimated from the fact that,
when (8.22) and (8.22') are applied to the case of plane symmetry (i.e.
where there is no lateral variation and the slit is of infinite lateral extont),
' one obtains the conditions Paite(z) and jye(z) continuous, instead of the
" more acourate conditions (7.14).

In view of this, it might be supposed that the boundary conditions at
the surface of the slit could be improved, while retaining the diffusion
approximation, as follows. Let us define, instead of (8.21), the quantity

(8.22)

Pan(r, Q) = %[ﬂ;——dett(r)+9-1dxzz(r)] ) (8.23)

and approximate the angular distribution of neutrons entering the slit,

that s, y/(r,R) in (8.20), by 4. (r,R) instead of Yaur(r, ). We then have
in place of (8.22)

HLYBY(1—e))paue(, ¥, 0)— 3 jsee(, 1, 0)

=L [ [ pany B dedy 3k fjdm(x',yzm da'dy’
™ I3 3 Pt 4 7 !

(8.24)
where the subscript 1 refers to the medium in z < 0, and 2 to that in
z > k, and a corresponding formula (8.24’).
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However, though these latter conditions are certainly superior to

(8.22) and (8.22') when p(r) and j(r) vary very slowly in the lateral
direction, nothing can be said as to their respective merits when this is
no longer the case.

8.6.3. Gaps and cavities of other shapes

The analysis given above for the case of a plane slit can be extended
at once to gaps and cavities of other shapes. We shall not give details,
but only some general remarks on the form of the extensions.

Firstly, the factor —A2/p* which accompanies the angular distribution
Y(’,y", b) in the integrand of (8.20) can be written as

cos fcos 8’/ Re, (8.25)

where R is the distance of the area clement dA, where the current is
evaluated, from the area element 44’ where the neutrons are emitted,
6 is the angle between the normal to d4 and the direction of travel of
the neutrons, and similarly for 6’. Since cos § arises from the definition
of the normal component of the current, while cos 8’ |dA’ |/ R? is the solid
angle subtended by dA’ at a point on d4, it appears that the factor
multiplying the angular distribution at the emitting surface in the
expression for the current at d4 will always be of the form (8.25), whether
ornot the gap has the form of a plane slit. The integration will, of course,
extend over all area elements dA4’ which are ‘visible’ from dA.
Secondly, in cases of spherical or cylindrical symmetry, where the flux
depends only on the radial coordinate, although the existence of the slit
cannot be ignored as it can in the case of a plane slit in similar conditions,
the following simplification occurs. No neutrons can be created or
destroyed in the gap, and since, in the symmetry conditions assumed, the
normal component of the neutron current should be a constant on either
face of the gap, it follows that it must be inversely proportional to the
area of the corresponding face. Identifying j(r)and jys(r), we then have

a%qa(a) = 0% qun(b) for the spherical case }’ (8.26)

@jaa(a) = bjan(d) for the cylindrical case

where a and b are the inner and outer radii of the gap.

It is evident that the boundary condition (8.28) will be a consequence
of the analogues of (8.24) and (8.24’) (or of (8.22) and (8.22")) for this case.
In dealing with gaps in a system where the neutron flux has spherical

or cylindrical symmetry, it is therefore possible to use (8.26) and the
analogue of either (8.24) or (8.24').
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8.7. The effects of sources

It is necessary to decide also how the presence of sources is to be taken
account of in the diffusion approximation. We distinguish two cases,
one where the sources are situated at isolated points and the flux is
considered at distances from them of many mean free paths, and the
other where the sources are distributed over a volume V at a strength
slowly varying with position, and the flux is considered throughout V.

In the first case, (5.25) shows that the diffusion approximation to p(r)
represents the solution of the equation

(v Za)punte) = — TRt 5. (8.27)

where 8(r) is the number of neutrons emitted per unit time per unit
volume by the sources at r.

In the second case, however, the analysis of Chapter V is not directly
applicable. Instead, we at first suppose the sources uniformly distributed
in ¥V with strength §, per unit volume per unit time. Let the neutron flux
boropresented 8 r) = pyle) b,

where p,(r) is what the flux would be if ¥ and its sources were infinite in
extent, and p,(r) is the deviation of p(r) from this. Evidently p,(r) is a
constant, whose value is given by the condition that the number of

neutrons produced by the sources is equal to the number captured, and
hence
(I1—c)py/l = 8, (8.28)

On the other hand, p,(r) may be regarded as the distribution in a source-
free medium, and according to the results of Chapter V it may be divided
into p,ain(r) and pyy.(r). To extend the diffusion approximation to the

present case, we should identify p,(r) with p,(r); that is, pa(r) is
defined by

pai(r) = py(r)+pg ain(r). (8.29)
On combining (8.28),. (8.29), and (5.4) for p, gia(r), we have then
(Vz_ Zl'z) panlr) = — Tzt (lff.c)' (8.30)

The same argument can be applied when the source strength per unit
volume is not a constant but is a linear function of the Cartesian co-
ordinates of r. Assuming that the second and higher derivatives of the
source strength are too small to have effect, the equation for pgg(r) in
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the region occupied by the sources becomes
1 18(r)
2— — = e ., .
(V Lg)Pdlﬂ(r) L’(l—c) (8 31)

The appearance of the factor I/ L*1—c} in the free term of (8.31) can
be undoerstood un the grounds that the output of the sources is measured
in terms of j(r) and not of grad p(r), and these two quantities are con-
nected by (6.37). The free term of (8.27) contains a further factor

2(1—e)(L2—-13) .

=T = 1—$(1—c)+.; - (8.32)
this arises bocause only the fraction (8.32) of the source noutrons is
associnted with the goneration of pyp(r), i.e. can travel a distanco of tho

order of L bolore capture, and only this fraction is therofore of interest
in the first case discussed above, whose solution is (8.27).

8.8. A remark on orthogonality

We conclude the present chapter by considering a rather different
aspect of the diffusion approximation. We have seen in §4.7 (see
equation (4.30)) that, if the number of secondaries per collision, ¢, is
regarded as a variable parameter, then the exact solutions of the problem
for different eigenvalues are mutually orthogonal. The question arises
whether this is true in the diffusion approximation also. However, it
may be seen from simple examples that this is not in general the case,
when the diffusion theory is used with the best boundary conditions
available.

The mathematical reason for the lack of orthogonality is that (suppos-
ing for simplicity that the system is bare, homogeneous, and non-re-
entrant) the differential equation of the diffusion approximation will
involve «%, while the boundary conditions (which may be taken in the
form (8.11)) will involve z,. Both these quantities depend on ¢, but the
relation between them is not linear, and it is known that in problems non-
linear in the parameter the different eigenfunctions are not in general
orthogonal.

The physical reason for the lack of orthogonality is as follows. Let
suffixes denote the successive eigenfunctions. It is known that the

exact solution p,(r)is orthogonal to p,(r). If p, 4a(r) were also orthogonal
t0 py ain(r), this would imply that

[{ [ leraatrIpaain()+pr a(O)pase(E) +pyae(Tpasa(r)] AV = 0, (8.33)

and there is no reason why this should be so.



108 THE DIFFUSION APPROXIMATION VIIL ¢ 8

Itis of interest to remark that if the most acourate boundary conditions
available are not used, but instead 2, is taken as 0-7104! regardless of the
value of ¢ (cf. (68.27), (8.29)), then the problem becomes linear in x? and
the successive eigenfunctions will again be orthogonal. We have seen,
however, from (8.33) that this circumstance has no particular signifi-
cance. Of course, the above remarks apply to a system containing two
or more media only if ¢ varies in just one medium.
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THE SERBER-WILSON METHOD

9.1. Serber’s formulation of the method

WEe have seen from the discussions of Chapters V and VIII that the
error involved in the use of the diffusion approximation is due, not so
much to the replacement of p(r) by a solution of the differential equation
(8.2), as to the attempt to specify the solution of (8.2) by means of
boundary conditions, while the boundaries are the very places where
the approximation of p(r) by a solution of (8.2) is least justified. This
suggests that the quality of the approximation could be oconsiderably
improved if the solution of (8.2) were specified not by boundary condi-
tions but by some integral-type condition.

A method of this nature was suggested by Wilson (55), and an
essentially similar one independently by Serber (39). The method
can be applied only to the determination of the critical size of spherically
symmetrical systems, but in some cases it shows a noticeable improve-
ment in accuracy over the diffusion approximation. We first give Serber’s
formulation of the method.

The best test of the accuracy of a particular solution of (8.2) is to
substitute it into the exact integral equation for p(r) and find the
difference between the two sides. In dealing with spherically symmetric
systems, it is clearly simplest to apply this test at the centre, since the
integration need then be effected only over the radial coordinate, the
integration over angles being replaced by multiplication by 4x. Serber
accordingly stipulated that

The integral equation (4.15) shall be exactly satisfied at the centre of the
system. (9.1)

In finding the critical radius of a bare homogeneous sphere, there is
only one region in which (8.2) is to be solved; the solution must be
spherically symmetrical (since only this can give the lowest eigenvalue
which determines the oritical configuration) and regular in the sphere.
There is only one such solution, apart from an arbitrary factor, namely

sin xr

PO)——.

The only parameter to be determined is the critical radius itself, and for
this the single condition (9.1) is naturally sufficient.

(9.2)
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In finding the critical radius of a homogeneous spherical core in an
infinite homogencous reflector (assuming that for the core ¢ > 1 and for
the reflector ¢ < 1), the relevant solution of (8.2) is again (9.2) for the
core, while that for the reflector is

(A-[r)e-riLs, (9.3)
where now « = ¢/L, and L, and L, are the solutions of (5.5) for the core
and reflector respectively; 4~ is an arbitrary constant. The other
spherically symmetrical solution of (8.2) for the reflector, namely

(At/r)etriLs, (9.4)
is omitted, since it gives p(c0) = -}-co, and this means therois a supply of
neutrons to or from infinity, which is assumed not to be the case in
problems of critical size. Wo therefors have two puramotors to determino,
the critical radius a and the ratio p(0)/4-. To do this, two conditions are
required, i.e. (9.1) must be supplemented by another condition. This is
easily done in the present case, since in a stationary problem the number
of neutrons in the system must be conserved, that is,

T'he excess number of neutrons produced in the core = the number caplured
n the reflector-t-the number escaping Jfrom the system. (9.5)

If the reflector is infinite in extent, the second term on the right is
zero, and the other terms of (9.5) can be evaluated by substituting the

relevant solutions of (8.2) for p(r). This provides the second condition
to supplement (9.1).

9.2. Wilson’s formulation of the method

In more involved cases, such as those where the roflector is of finite
thickness only, or where it consists of several layers of different properties,
a larger number of conditions will be required. However, it has not been
possible to find any further conditions which are as easy to apply and as
convincing as (9.1) and (9.5). There is, nevertheless, a fairly plausible
ad hoc generalization of these formulae. To obtain it, we shall first
rewrite the above conditions as follows:

Let pgp(r) be a solution of (8.2) for each region in turn, having the
necessary properties of symmetry and regularity; it differs from pain(T)
only in that the constants of integration are determined by different
conditions. Let jgu-(r) be related to Psw(r) in the same way that
Jjain(r) is related to pya(r) (see (8.14)). Let pgy 4(r) coincide with Psw(r)
when r is in the jth region, and otherwise let it be defined by analytic
continuation. Thus, if pgy, ,(r) is regular in all space, it can be inter-
preted as the neutron flux that would exist if the Jth medium occupied
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all space. Let gg,,(r,R2) be, for r in the jth region, the angular distribu-
tion which would arise from a flux Psw 4(t) throughout space, with I and
¢ having everywhere their values in the Jth region. According to (4.16),

0

Yo (T, 92) = ngT, f psw4r— RQ)e-R IR, (9.6)
1]
if r is in the jth medium.

In our application to spherically symmetrical solutions, we shall be
concerned only with the radial component jgu(r) of jgp(r), while
Ysw(r,S2) will depend only on r and on the radial component of ; the
latter we call 1 and accordingly write Yo (r,Q) as gy (r, u).

Wo now oxpress the conditions (0.6) and (9.1) in this notation. It has
already been remarked that (6.34) is applicable to the diffusion approxi-
mation as well as to the exact solution. If (8.2) is assumed, either of
(6.34) and (8.14) can be derived from the other. Since (8.2) and (8.14)
hold for pgyp(r) and jgp(r), 80 does (6.34), and so, expressing the condition
(9.5) in terms of jgy,(r), we obtain

4"a§jsw(ax")+[4"“§jsw(az—)-%afjsw(a1+)]+---+

T4l jow(@n—)—4m0_y fspany+)] = 4mad jlan+), (9.7)
where a,, a,, etc., are the radii of the interfaces between the successive
regions, and a,, is the outer radius of the outermost region, If we approxi-
mate p(r) by pgp(r), the first term in (9.7) represents the excess number
(positive or negative) of neutrons created per unit time in the inmost
region; the second term, that in the first spherical shell, and 8o on. This
is the required form of (9.5).

For the centre of the system, again approximating p(r) by pgp(r), and
using polar coordinates and (9.6), (4.15’) becomes

Psw(0) = 4y (0, —1)—dhgp(a,—, —1)}+

Hrlfewla,+, — 1) —dgplag—, —1)}+.... (9.8)
For the inmost region, the solution of (8.2) will be regular at r = 0, and
is therefore of the form (9.2); its analytical continuation is thus regular

in all space. Hence it is an exact solution of the corresponding infinite
medium problem (sece §5.1), and therefore Psw(0) = dmfigyy(0, —1).

With (9.8) this gives
[lﬁSW(a’l—" —1)—¢SW(a1+: _1)]+
+[¢'SW(“2": "'1)"'/’SW(a8+: ~1)]+"'+‘/‘SIV(an“’ "‘1) = 0. (9-9)
This is the required form of (9.1),
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When the conditions (9.1) and (9.5) have been put in the forms (9.9)
and (9.7), it is seen that, if twice as many conditions are required as there
are interfaces, together with one for a free surface, this is most naturally
achieved by stipulating

» Jawlr) 18 continuous (9.10)
and Yew(r, —1) is continuous and Ygpla,, —1) = 0. (9.11)

The discussion given above has assumed the absence of gaps in the
system. If these are present, the expressions (9.7) and (9.10) must be
modified as indicated by (8.26). N

The condition (9.10) is identical with the condition (8.13) used in the
diffusion approximation; the latter, as we have seen, was more justifiable
than (8.12), which is now replaced by (9.11).

The conditions (9.10) and (9.11) were proposed by Wilson also, but on
different grounds. These were that J(r) and (r, —1) were less likely to

be distorted, in approximating p(r) by a solution of (8.2), than any other
functions that can be as easily constructed from p(r).

9.3. The explicit form of the Serber-Wilson conditions

We shall now investigate the nature of the calculations involved in
applying the Serber-Wilson method. The condition (9.10) introduces

only elementary functions, and so we shall concentrate on (9.11).
Supposing first that ¢ < 1, and substituting into (9.6) the general
expression for pgyp(r) in such a region

Paws(r) = (A7 [r)e~"Ls+ (A} [r)er'Ls, (9.12)
we find, suppressing the subsocript j,

¢ [ dR
Ygwlr, —1) = —- f _.__[ A-e~RD-URILIY 4 +e-(RIl)H(R+r)/L)]
4l R
o T+

¢ lacwfr r r
= e /'[A E,(7+E)+A~:E1(.l_z)]. (0.13)

Similarly, if ¢ > 1, limiting ourselves for simplicity to the inmost
region, where pgy(r) is given by (9.2), we obtain

baw(r, —1) = —%(r-io'—ze'” im El(%-{-ixr). (9.14)

The exponential integral function E, has been tabulated (62) for complex
arguments, so that no numerical integration is needed in applying the
Serber-Wilson method to spherically symmetrical problems.
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If the critical radius is required for a number of situations, e.g. for
various compositions of the regions of the system, it may be rapidly
obtained by means of a graphical method described by Melvin (39),

9.4. The accuracy and limits of applicability of the method

We finally attempt a qualitative estimate of the acouraoy obtainable
by the use of the Serber—Wilson method. Considering first the case of a
bare homogeneous sphere, we have seen in Chapter VI that p,(r) is
negative for an infinite half-space, and the same should be true for a
bare sphere. The solution of (8.2) which agrees with the correct p(r) at
r = 0 will therefore be greater than p(r) everywhere else, and from

Azw a

f psw(ryedr = f p(rie-rRdr
0 é

*(see (4.15) and (9.1)), it follows that ag, < a, that is, the Serber—Wilson
method necessarily underestimates the critical radius. Wilson arrived
at the same conclusion in a different manner, as follows, If

p(r) = [p(0)/xr]sin xr

everywhere (and this, as we know, is a permissible solution of the exact
integral equation in the infinite medium case), y(r, p) is the correspond-
ing angular distribution (which can be constructed by using (4.18)), and
r = a is the smallest solution of y(r, —1) = 0, then it follows from (4.18)
that for this » and any pu % —1, y(a, u) is positive, Hence Paw(r) i8 the
exact solution for the problem where a certain number of neutrons fall
obliquely on the sphere from outside, though none fall normally, Wilson

'] 1
has calculated the ratio [ |u|y(a, u) dy./ J wp(a, 1) du for a few sample
-1

values of «I, and has found it to be very small, i.e. the number of neutrons
entering the sphere, introduced in applying the Serber—Wilson method,
is very small compared with the number which escape from the system.
The underestimation of the critical radius is therefore by only a very
small amount,

The arguments used thus far have been based to some extent on the
division of p(r) into pye(r) and pe(r). As c—1, and consequently I,
increase, this procedure loses its significance, but on the other hand the
relative spread of the values of p(r) decreases, and the satisfying of the
integral equation at (at least) one point becomes more important. The
net effect would be expected to ensure the accuracy of the Serber-

3595.99 I
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Wilson method for larger values of «! than those for which the diffusion
approximation is applicable. This has been shown to be the case by
comparison with more accurate methods to be discussed later (twosample
results are given in Table I), and it would seem that the Serber—~Wilson

method can be applied for any value of ¢, unless very high accuracy is
required.

TanLE I
Comparison of critical radii as given by various approximate methods

Ceore Gy Gy Gy
1-30 1-79 1-77 1-77
1-80 0-90 0-92 0-95

@, = critical radius as given by the diffusion approximation,
ay = critical radius as given by the Serber-Wilson approximation,

@, = critical radius as given by the P, spherical harmonics approximation, which can
be taken as almost exact.

The values of the a, are given in mean free paths in the core. The system consiste of a
sphere in an infinite reflector with ¢ = 0-985 and ! nearly the same as in the core,

For more complicated systems, it has been found that if there are no
gaps, and ¢ > 1 in the central region and < 1 elsewhere, which is the
normal arrangement in a reactor, the error in the critical radius is a very
slowly varying function of the conditions. It is therefore often enough
to determine the correction to the Serber-Wilson result for one typical
case, by comparison with more accurate calculations, and then to
apply the same correction over a fairly wide range of conditions.

However, if gaps are present, or if the inmost region is capturing
rather than multiplying, the accuracy turns out to be no better than in
the diffusion approximation. In the former case this has not been
explained, or even confirmed, but the poor accuracy in the case of a
capturing central region is to be ascribed to the fact that the ratio

a a
J pulrie—rh dr / psw(r)e~"" dr, where a is the radius of the central region,

is larger than in the cases previously considered. Roughly speaking, in
this case the centre becomes a rather non-representative point, and to
satisfy the integral equation there no longer guarantees a good approxi-
mation throughout the system.

When the application of the Serber-Wilson method to systems with
other symmetry properties (plane or cylindrical) is considered, it is
found that Serber’s condition, that the exact integral equation should be
satisfied at the centre of the system (i.e. in the midplane, or along the
axis of the cylinder), will no longer be equivalent to Wilson’s condition,
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that ¢(r, —1) should be continuous. If the former condition is applied,
the method becomes so complex that the accuracy it gives is no longer
worth the effort needed to obtain the result ; if the latter condition is

applied, so much acouracy is lost that the simplification of the solution
confers no advantage.



X

THE SPHERICAL HARMONICS METHOD FOR
PLANE GEOMETRIES

10.1. A general outline of the spherical harmonics method

THE approximate methods of solution of the neutron transport equation
which were described in the last two chapters were capable of giving
answers only to a limited, if quite satisfactory, degree of accuracy. We
shall now turn to methods which are able to give regults of arbitrarily
high accuracy, provided that a sufficient amount of labour is expended
on their calculation.

Of these methods, the spherical harmonics method (first applied to
neutron transport problems by Wick (53) and Marshak (35), and
developed in detail by Mark (32, 33)) is the most useful except in isolated
cases. For the sake of simplicity, we first outline it for the case of plane
" geometry, that is, where the neutron flux is a function of one Cartesian
- coordinate (z, say) onmly, and consequently the angular distribution
depends only on  and on the z-component of @ = K, say. In symbols,

p(r) =plz);  Y(r,R) = Y(z,p).
Unlike the methods we have previously discussed, the spherical har-
monics method takes as its starting-point not the integral equation (4.15")
but the Boltzmann integro-differential equation. In the constant cross-

section approximation with isotropic scattering this has the form (4.4),
while in the plane case in the absence of sources it further reduces to

1
“&ﬁ(axxm) +¢(xl,u) - '267 f Wz, 1) dps. (10.1)
-1

The angular distribution y(z,x) is now expanded into spherical
harmonics in u, so that

o) = 2 > @t DB W), (10.2)
n=0

where F,(u) are the Legendre polynomials, and
1
$ol) = [ [ Wlm, ) Pa(u) O = 20 [ Yo, w)Pr(p) dp. (10.3)
-1

The equation (10.1) is then multiplied by (2n4-1)F, (1) and integrated
over all i, using the recurrence formula of Legendre polynomials:

(n+ l)Pa+1(l")+nPu-l(F') = (2n+ l)l"Pa(I")n
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which may be found in Whittaker and Watson (52), p. 308, and the
result is

(- D)+l 2nt ) Py ) 0, (10.4)

where dashes denote differentiation with respect to x.

The quantities ¢, (x) are referred to as the spherical harmonic moments
of the angular distribution. It is seen that the first two moments, ()
and y, (x), are identical with the flux p(z) and the current j(z) respectively.

The equations (10.4) form an infinite system of differential equations
with an infinite number of unknowns. Though the exact solution of this
system is impossible, an approximate solution can be found by assuming
that ¢y, (), say, is negligibly small. We shall later disouss the validity
of this approximation, but it may be noted here that from (10.3)

1
biva@) = 2m [ By Bot) g,
-1

and consequently, unless the dependence of 8y/ax on p is of a delta-
function character, Yy, () should tend to zero as N — co while z remains
constant. The uniformity of this convergence, however, cannot be thus
proved.

If this approximation is made, the first N +1 equations in (10.4)
contain only N+1 unknowns, Yo(@),..., Py(x), 80 that the solution
reduces to that of a system of finite order. In carrying this out, we
employ the well-known procedure of seeking a solution in the form

Yu(@) = g (n=0,1,...,N), (10.5)
say, where the g, are some constants. Substituting (10.5) into (10.4)
Ot Wt g A )=l = 0, (106)

which is a system of equations to determine the gn. If the equations

(10.8) are compatible, the determinant of the coefficients must vanish,
ie.

e » 0 0 . . . 1] 0 = 0,
v 3 » o ., , , 0 0
0 2» 5 3 0 0
0 0 3 7T 0 0 (10.7)
0 o o o . . . (N—1) 0
0 o o o . ., . (2N-1) Ny
0 o 0 o ., ., . Ny (2N 4-1)

and this equation determines the permissible values of v in (10.5). The
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g, in (10.5) will, by (10.8), depend on v; hence, if v, are the solutions of

(10.7), the general solution of (10.4) in the present approximation will be

Pu(®) = ; 4,9, v)en= (0 = 0,1,...,N), (10.8)

where the 4 are arbitrary constants to be determined from the boundary
conditions.

The approximation in which }y,,() is neglected, so that yiy(z) is the

highest spherical harmonic which appears in the equations, is called the

Py approximation. If N is odd, the approximation is called odd-order
and the number of equations retained in (10.4) is even, and conversely.

10.2, The coefficients and exponents involved in the method
10.2.1. Auxiliary functions

It is convenient to introduce a set of auxiliary functions @, (v), defined

by
1 1 1 1
6 = () -de()af)-al)]) a0
vV v v vV, vV
where F, are, as before, the Legendre polynomials, and @, are the
Legendre functions of the second kind (see Whittaker and Watson (52),

pp. 316 fI.). Since the @, satisfy the same recurrence relations as the
P,, it follows that the G, satisfy

(1 )Gnn0)+ 2 6,0 406, 0) =0 (a1 >1), (10.10)
while from the definition
G) =1,  Gy) = (c—1)p. (10.11)

The last two formulae can be regarded as an alternative definition of the
G,. On comparing these formulae with (10.6), we see that the coefficients
g, in (10.5) are proportional to the functions @G, (v), so that the solution
(10.8) of the equations (10.4) in the P, approximation can be rewritten
ll’n(x) == ; A, G,,(v,)e"!"’. (10.8’)

Since the definition of G,,(v) does not involve N, the recurrence relation
(10.10) shows that (10.8’) should hold also forn = N -+-1. Since, however,
Yyn(x) i8 neglected in the Py approximation, we should thus have

Gy4a(v) = 0, i.e. the permissible values of v in the Py approximation
must be the solutions of Gyal¥) = 0, (10.12)

and therefore this should be identical with the determinantal equation
(10.7). This can be directly verified by writing both equations in the
form of continued fractions.

We reproduce here the tables (given by Mark (33)) of the permissible

4
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values of v, and of the corresponding values of @,(v,) (n =0, 1,..;, N)

for various values of ¢ and ., Only positive values of v, are shown, since
by (10.10) and (10.11)

Op(—v) = (— 1)@, (v). (10.13)
This last relation shows that for ¢ = 1 the equation (10.7) will have in
every approximation a double root v = 0. The general theory of lincar

differential equations shows that the contribution of this root to (10.8")
will then be

oxpbe/{ 46,01+ B2 6,00 + L 6, }
l dv y=0
It is obvious, however, that, whatover the value of N ,wohave fore =: 1
Gn(o) = 801;’ [dGn(V)/dv]vno = _ésln' (10'14)
and the corresponding contributions to (10.8’) are easily shown to be
A+ Bzl to yy(x)
—3B to ¢y(z) }
0 to Y, (z) (n>2)
10.2.2. Properties of the roots of the determinantal equation
An examination of Table II shows that for ¢ << 1 the permissible
values of v, are, for any N, real and different, and for ¢ — 1 two roots
are equal; for ¢ > 1 not more than two roots are imaginary, all others
being again real and different. These properties are valid for any N,

and are proved by means of (10.10) and (10.11), as follows.
We put for brevity

(10.15)

Yy =12, Yin =}, (10.16)
where N denotes the order of approximation to which the v, belong, and
| Boy) = —(n-+ 1)1 10)/G, (). (10.17)

In terms of R,(y), the relations (10.10) and (10.11) become
Ro(y) = (2n+1)—n%/R, _(y) (10.18)
and Ry(y) = 1—c. (10.19)

We shall require the property, which follows from the last two equations,
that, for y —» oo, R, (y) i infinite for odd n and finite for even n, while the
values of R, (co) for consecutive even = are related by

Ry\(00) = 48+1-1(28/[2s— 1]1)2 Ry, _s(c0), .
and this, from (10.19), implies

Ryy(00) = (2a+1)3__[§.§ 28 ]z

oo m—— = (2 2_
'3 55— ¢ = (%8+1)

[T,,'(%)]‘z‘ (10.20)
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Algo, unless ¢ = 1, R, (0) cannot vanish for any n. It is clear that R, (y)
is a rational meromorphic function of y, and for n = N its zeros should
coincide with the squares of the roots of the determinantal equation
(10.7). Since the latter is of order not greater than N4-1 in v = vy
(N1 being the order of the determinant, and the elements of it being
linear in v), R, (y) has at most §(n--1) zeros. Similarly it can be shown
that R, (y) has at most 4n poles at a finite distance, and the poles of R, (y)
are the zeros of R,_,(y).

We now consider the position of these zeros, taking first the casec < 1,
The value of R,(y)is 3—y/(1—c), and this function has just one zero; for
¢ < 1it is real and positive and d R, /dy is negative there. We prove this
property to be general by induction, Let Ry, () have, for some &, s
real positive different zeros, at each of which dR,,_;(y)/dy is negative;
let these zoros, in order of increasing y, be y;4,, (j = 1,2,...,8). From
(10.18) we have for ¢ sufficiently small ‘

8ign Ry\(y; 0,1 1€) = signe;
also, R,,(0) > 0. An examination of the sign changes of R,,(y) shows

that s zeros of the latter function, which we call y,,, (j = 1,2,...,8), are
distributed as follows:

0 < ¥ < Y21 < Y220 < oo < Ypte < Yp20-10 (10.21)
Since R,,(y) can have not more than 3(2s-1) zeros, i.e. not more than s
zeros, it follows that all the zeros of R,,(y) are shown in (10.21); the same
type of argument also proves that dR,(y)/dy <0 for y=y,,,
(j = 1,2,...,8).

A repetition of this argument, using the fact that R,,(c0) > 0 from
(10.20) and so Ry,,(+00) = —o0, shows that R,,,,(y) has s{1 real
positive different zeros, at each of which dR,,,,(y)/dy is negative. This
completes the proof that for ¢ < 1, R, (y) has }n or 3(n-1) zeros (accord-
ing as n is even or odd), which are real, positive, and different, and at
each of which dR,/dy is negative.

If ¢ > 1, it is necessary to consider separately the cases

1 <c <[3B(0)]%, [3P(0)] <c <[5F(0)], ete.,
but in every case the same type of argument leads to the same result;
for a,r{y ¢ > 1, R,,_,(y) has s real different zeros, one negative and the
rest positive, and ydR,,_,(y)/dy is negative at each zero, while R, (y)
has s real different zeros, and d R, (y)/dy is negative at each zero situated
at a finite distance. The sign of these zeros is more complicated, however;
if 1 <e¢ < [(2541)F,(0)]%, one zero is negative and the rest positive,
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if ¢ = [(2s+ 1)P,,(0)]* ane zero is infinite and the rest positive, and if
¢ > [(26+1)P,,(0)]*, all the zeros are positive,

We now apply these results to the equation (10.7). It follows from
the above that in the F,,_, approximation this equation always has just
2sroots, the same as the number of spherical harmonic moments retained,
Further, 25—2 of these roots are always real and different, while the
remaining pair are imaginary conjugates, both zero, or real and different
aoccording as ¢ > 1, ¢=1, orc< 1. In the P,, approximation, the
equation (10.7) will have 2s roots or, for one particular value of ¢, 28—2
roots; that is, one (or, exceptionally, three) less than the number of
moments ¢, (x) retained in the approximation. Of these roots, 26— 2 will
be real and different, while the remaining two will be real and different
fe<lore> [(26+1)P,,(0)]?, zero and equal if ¢ = 1, imaginary and
different if 1 < ¢ < [(264-1)P,,(0)]2, and infinite (i.e. non-existent so
far as (10.7) is concerned) if ¢ = [(2s+1)P,(0)]2.

The fact that the number of roots equals the number of moments
retained in an odd-order approximation, but not in an even-order
approximation, shows that the two cases are not quite on the same

footing. We shall show in §10.3.2 that in fact the even-order approxima-
tions should be discarded entirely,

10.2.3. Behaviour of the roots of the determinantal equation in high-order
approximations
In order to examine the behaviour of the roots of (10.7) in approxima-
tions of very high order, we first rewrite (10.18) and (10.19) as
R, .0 = nh3/{2n4-1 — R, ()}, ¢ = 1—Ry?),

»2 2 42
=l =l = = .
whence c ) Iy etc
The continued fraction
v 4 g '
—F_F (10.22)

oonverges in the complex plane cut along the real axis from —oo to —1
and from 1 to oo, This follows, since the convergence of (10.22) depends

on that of W (n41)pe
2n4-1— 2p4-3 "
and for n sufficiently large this can be replaced by

(2n—1)—

n[ ._1’2_'__"5'__...]. (10.23)
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If z, and z, are the roots of z = 2z, it is easily verified by induction
that the mth convergent of the continued fraction in (10.23) is

AP mes

2P I _ml
and this tends to a definite limit unless 21} = |24, i.e. unless (1—y%)i

is purely imaginary. The expression (10.22) therefore converges in the

cut plane, and so it converges uniformly in any closed region in the cut
plane.

The expression (10.22), in fact, converges uniformly in any closed
region in the cut plane to the function

1 14—t
P{z—ylog } , (10.24)

le—yp

where P denotes that we take the principal branch of log[(1+-v)/ (1—v)].
This is proved by expanding the latter function as a continued fraotion,
and showing that it is identical with (10.22) for |v] < 1. Since
(1/2v)log[(14-») /(1—v)] is regular and one-valued in the cut plane, this
identity holds for all v in the cut plane, by analytic continuation.

In the Py approximation, the determinantal equation (10.7) can there-
fore be written

¢=(N+-1)th convergent to the continued-fraction form of (10.24);

(10.25)

and, as the order of the Approximation increases, the jth root of (10.7)
will converge to the corresponding root of

Cc = P{zllog 1+,,}-1’ (10.26)

v l—yp

or will tend to one of the cuts. Equation (10.28), however, is identical
with (5.5) and therefore has only two roots, which in the notation of
Chapter Varev = 41/L or +ixl, according as they are real or imaginary.
Thus, if the roots of (10.7 ) in the Py approximation are Eviv van
ete., where v} y <1}y < ...(all the v} v are real by § 10.2.2), we have

im v,y = I/L (or ixlif ¢ > 1), (10.27)
N
while the remaining roots satisfy the inequality
' Viv > l—ey (5 =2), (10.28)
where lim ¢y = 0. If jc—1| is small enough, this can in fact be re-
Nowo

placed by My >1 (2.
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A slight refinement of the above analysis shows that the aggregate of

the v,y for all N and all j > 2 fills the cuts in tho v-planc everywhere
densely.

The combination of (10.27), (10.28), (10.8'), and (5.27) shows that the
terms in (10.8°) corresponding to v = +v, y tend to ¢, ,,(x) with increas-
ing N, while the sum of the remaining terms tends to ¢, . (x).

10.3. The boundary conditions
10.3.1. Conditions at an interface between media
In order to complete the formulation of the apherical harmonics

method in the case of plane symmetry, it is necessary to give the boundary
conditions on the solution of (10.4),

At an interface betwoon two media, tho boundary condition in the most
general case is given by (2.19), and in a stationary problem with constant
cross-gsections, this becomes

Y(r+ RQ,Q) is a continuous function of R;
in the plane case this further reduces to
Y(, i) 18 a continuous function of x for any p except (possibly) u = 0.
. (10.29)
On multiplying this by P, () and integrating over all i, we see that in the
exact solution ,,(x) must be continuous for all #. In the Py approxima-

tion, however, iy ,..(%) is not taken into account for »' > 1, and so the
boundary conditions which may be stipulated are
Y. (x) 18 continuous for n = 0,1,..., N, (10.30)
An extra medium introduces an extra interface, and consequently tho
number of conditions that can be satisfied at each interface is equal to
the number of arbitrary constants involved in (10.8’) for each medium,
that is, to the number of roots of the determinantal equation (10.7). If
N is odd, this number of roots is N+1 (see § 10.2.2), and so all the
conditions (10.30) can be satisfied; these are therefore the boundary
conditions to be imposed at an interface in an odd-order approximation.
If N is even, however, the number of roots is N (we assume that N is so

large that ¢ < [(N-+1)By(0)], (10.31)
since otherwise even-order approximations are inapplicable—see § 10.3.2
below), and 80 only N conditions can be satisfied. These may be arrived
at as follows. The quantity y;(x) varies rapidly near the interface, and
its derivative has a logarithmic singularity there; this is seen from the
fact that o(x) = p(x), using (6.54) and E,(x) ~ —logz for > 0. It
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is thoreforo reasonable to permit some discontinuity of () in a finite-
ordor approximation, Further, yi(z, #), regarded as a function of u
and zu/l, cannot be a rapidly varying function of zu/l for any p (see the
derivation of (10.29)). Thus Y(x, 1), rogardoed as a function of  and T
cun be a rapidly varying function of z only for small 4; the rapid variation
of ¢(x) therefore arises from the contribution of small i1, and this can be
allowed for in a manner consistent with the spherical harmonics method
by multiplying (10.29) not by B,(u), as in the derivation of (10.30), but
by [B,(s)—P,(0)]. In this way the contribution of small y is removed,
and we obtain instoad of (10.30) )

[n(@) = B, (0)o(x)] is continuous Jorn=1,.,N, (10.32)
i.e. oxactly tho numbor of conditions neoded; thoso aro therefore the
boundary conditions to bo imposed at an intorfuce in an even-order
approximation.

The conditions (10.32) can also be arrived at as follows. Taking
(10.12) as an equation determining the values of 1/v,, it has always N1
solutions, but, for N even, one of these is zero, so that (10.7) can be
regarded as having an infinite root as well as its N finite roots. To take
account of this, we add to (10.8') a term for a large but finite v = »* and
then mako v* tend to infinity. If , is the interface, the term added to
(10.8") is

A*lim @, (*)ere-20 — {A*P W0 @E=2), )0
Vo : 0 (= < x,),
which follows since @,(c0) = F,(0), by (10.9). Using (10.30) and adding
(10.33) to (10.8') is entirely equivalent to retaining in (10.8') only the
terms for finite v,, but replacing (10.30) by
'/’n(x—xo'*')—'/'n(x”'xo-) = A*.P,‘(O) (n=0, L,..,N), (10.34)

where 4* is independent of n, and eliminating 4* from (10.34) gives
(10.32).

10.3.2. Odd-order and even-order approximations

The discussion 0f§10.3.1 has shown that the boundary conditions at
an interface are different according to the parity of the approximation
order, and involve an additional postulate for even-order approximations.
We should therefore expect that odd-order approximations would prove
superior, and this is in fact the case: any F,,_, approximation is invariably
Inore accurate than the succeeding P,, approximation.

The approximations of odd and even parity differ also in another
respect. We have seen that, forc > 1, the determinantal equation (10.7)
has, in approximations of high enough order, two imaginary roots,
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which cause an oscillatory behaviour of yi(z,x) as a function of z. In
odd-order approximations, these imaginary roots will be present in every
approximation (see § 10.2.2), and so the oscillatory nature of (z, u)
is correctly shown; however, in (e.g.) a second-order approximation
with ¢ > 9/4, the imaginary roots do not appear, and so the solution
found for y(x, p) differs greatly from the real solution. We should there-
fore expect that a P, approximation will be rather poor even if ¢ < 9/4.

As a result of these considerations, it appears that odd-order approxi-
mations are much more reliable, and we shall henceforth work only with
them. This difference between the odd-order and even-order approxima.-
tions was not discovered for some time, and this is one of the reasons why
Kourganoff (27, pp. 90 ff.) obtains poor results with the spherical
harmonics method, since he uses only even-order approximations.
Another reason is that he does not make the most favourable choice of
boundary conditions at the free surface (see below).

10.3.3. Conditions at infinity

We now return to the boundary conditions, taking next the conditions
at infinity, We discuss for definiteness the conditions at # = --co, and
suppose for the moment that there is no supply of neutrons from +-co, 80
that the neutron current vanishes there. The number of conditions to
be imposed at the extreme boundary of a system should clearly equal
half the number of parameters available per medium. In a physically
meaningful problem with a medium occupying a half-space, we must
have ¢ < 1, and if ¢ < 1 the roots of (10.7) are all real and half of each
sign, by § 10.2.2. If the neutron current vanishes at = -+-00, then the
coefficients of G, (vj)e’* with v; > 0in (10.8’) must vanish, and this gives
the required number of conditions. If ¢ = 1, the equation (10.7) has
two roots zero and the rest real and half of each sign. The coefficients
that belong to positive roots in {10.8') must again vanish, while the double
root introduces two coefficients, of which one (called B in (10.15)) must
vanish if the current at infinity is zero, while the other (4) need not. The
number of conditions is therefore again correct.

If there is a source (or sink) at positive infinity, for ¢ < 1 the discussion
of § 2.3.3 and (10.28) show that for j >> 2 the coefficient belonging to
+v; must again be zero, while the coefficient belonging to the lowest
positive exponent is determined by the strength of the source at infinity.
Similarly, for ¢ = 1 the coefficient B in (10.15) will be given by the
strength of the source, while the coefficients belonging to the non-
vanishing positive exponents will be zero as before.
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10.3.4. Conditions at a free surface. Mark's lemma and boundary
conditions
We next consider the conditions at a free surface, Suppose that this
surface is # = 0 and the medium occupies the space x > 0. The exact
boundary conditions are then

PO,pu) =0 forpu>0 (10.35)
(see § 2.3.2). This, however, constitutes an infinite number of conditions
which cannot all be exactly satisfied in an approximation of finite order.
In the Py approximation (where N is now always odd), we can satisfy

only 3(N+1) conditions. The reduction of (10.35) to this number of
conditions can be done in three ways:

(i) by choosing }(N +1) positive values v4 and satisfying (10.35)
exactly at these points, i.e. '

'l’(oil"'j) =0 (j =1,2,., %(N"'l)); (10°36)

(ii) by choosing }(N+1) functions defined in 0 < p < 1, which we

call x,(n), say, and making (0, 1) orthogonal to each function in that
interval, i.e.

1
[oomxman=0 (j=12..3+1);  @osm
1]

(iii) by replacing the vacuum in z < 0 by a black body (¢ = 0), and
regarding the free surface as an interface where the boundary conditions
are given by (10.30). This procedure avoids the arbitrariness involved in
(i) and (ii). ’

It was proved by Mark (33) that (iii) is equivalent to (i) with the By in
(10.38) given by the positive roots of

Pyalp) = 0. (10.38)
This is shown as follows. For the fictitious black medium in z < 0,
¢ = 0, 80 that for this medium

Gu(¥) = (—1)PPo(1jy) = By(—1v), - (10.39)
from (10.9), and the determinantal equa.tion_(lo.7), which is identical
with (10.12), becomes Pya(lfv) = 0. (10.40)
Further, from § 10.3.3, only the positive roots of (10.40) will contribute

to the expressions (10.8') for z < 0. Thus, combining (10.2), (10.8'), and
(10.39), we obtain

N
$(0—, ) =$ﬂ 2 4D @t DBWP(—1p).  (1041)
ssos.0 >0 n-xo
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The inner sum in (10.41) can be simplified as follows. From the recurrence
relation of Legendre polynomials
(41)Pyin(2) +0P 1 (2) = (2n+1)2F(2)
we have at once
(M4 1) P sa(22)Pon(2a)— Prnsa(22) Frn(21)]

= (2m-+1)(2,—23) En(21)En(2e) + [ P(21) Pra(20)— L5 n(Z2) Pr-a(21)]
= =) 3 @+ DB (10.42)

Using thisidentity withm = N,z, = p,23 = —1/v; together with (10.40)
and ¢(0—, p) = $(0+, ) (Which comes from (10.30)), we have

N+1 v
$(0+4,p) = o v;Zo A’p._v,j?‘iPN“(#)PN(— lfv),  (10.43)

which obviously vanishes for all positive roots of Py,i(p) = 0. The
method (iii) therefore leads to the boundary conditions (10.36) with the

p4 given by (10.38). These are known as Mark’s boundary conditions or
" black boundary conditions.

10.3.5. The application of Mark’s boundary conditions
The amount of numerical work involved in using Mark’s boundary
conditions can often be reduced by means of certain properties of the

quantities 3 @+ )G, 0)B)

We shall illustrate this in terms of a simple, admittedly favourable,
example.

Let the medium occupy the half-space z > 0,80 that z = 0 is the free
surface, and let ¢ = 1 (no capture). It is required to find, in the P, ,
approximation, the extrapolated end-point z, and the ratio 1;(0)/;(0)
of ourrent to flux at the free surface.

We first determine z,. Using (10.8') and (10.15), we have according to
§10.3.3

o, p) = %{A+B(§-») + 5 a0 5 ent NAELI)S

(10.44)
where the v, are the positive roots of Gy, (vy) = 0. The definition of z,i8
that x = —z, is the point where the analytical continuation of the

asymptotio flux vanishes; this asymptotic flux is clearly the first two

terms in (10.44), and 8o A = Bagll. (10.45)
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Using the recurrence relations (10.10) for » > 1 and (10.11) for n = 0,
we have as in the derivation of (10.42)

S e 1)@ (v Polps) = S 20 F0lGn0a(=49) (10, 46)
7m0 } vy

If the u, are the positive roots of Pp(x) = 0, for ¢ =1 these ex-
pressions reduce Mark’s boundary conditions (0, p;) = 0 to

1 .
0= B[——IM] + 2 v, () — = b o (10.47)

These may be regarded as a system of linear homogeneous equations for
B, A,, A,,..., A,, with coefficients depending on z,. The determinant of
the coefficients must vanish, and this gives z,. After suitable manipula-
tion the determinant becomes

[z°+ Z——-Mx]m 7 S 1 1
j=21
-1
[ZT“+ Ev——#s]#%“ 7 S Ha 11,
j=2 J = Vs
2o, =1
[—l‘-’+ Z;-—m]#:“ ue~? . . s 1
j=8 1
(10.48)
and this immediately gives
8 8
2o = z[gl,‘,—z’l/v,]. (10.49)

This can be evaluated, for given s, merely by consulting the tables of
zeros of the P and G functions, and substituting into (10.49). The
result in the P, approximation is z, == 0-58l, and in the F; approximation
2, = 0-69], compared with the exact value z, = 0-T1 (see (6.27)). The
convergence is seen to be good.

We now determine s, (0)/,(0). To find this, it is necessary to combine
in (10.44) all terms contributing to ¢,(0), and all terms contributing to
$,(0). Thus, for z = 0, (10.44) should be rewritten

50.0) = o 14+3:580] + 5 45 ot 1), (—0P).
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and consequently, since, for ¢ = 1, G,(y) = Fy(u) =1 and G,(v) = 0,
the equations (10.47) are replaced by
'l'l(o)] S

HO 1+ AT,

Eliminating /4(0) and the 4, and simplifying the resulting determinant as
before, we find instead of (10.48) the equation

= 0.

1+s$*§g; -]‘[( N
=0,
1+3:’;§g§mﬂ( o I R
which gives
¢1(0)1—I,, I‘[ = —1. (10.50
%(0) 1 K= .50)

In this particular case, a furbher sxmphﬁcatlon arises,since T p,canbe
expressed in terms of the first and last coefficients in the power-series
expansion of P,,(u). Using the recurrence relation for Legendre poly-
nomials to relate these coefficients for P, and P,,,_,, we find

E"".’l—l v 1)*(4.9—3)* 1_[ Fe2e-3

where p, y are the values of y, in the Py approximation, i.e. the positive
roots of Py,,(x) = 0. Similarly we find

2 —1% — ‘l—l

I3
and substituting into (10.50) we obtain the result
%O 1 =_1
¥0(0) 31 V3’
whatever the value of s. Thus (10.51) s true in every order of approxima-
tion, and is in fact an exact relation (see (6.47)). That is to say, by using
Mark’s boundary conditions we obtain in this example the correct value

for 4,(0)/6(0) in all odd approximations. This will not, however, be the
case for other values of ¢ or for other geometries.

The advantages of this mode of application of Mark’s conditions were
accentuated in these instances because it was desired to find a particular
quantity and not the whole neutron distribution, and because that

(10.51)
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quantity could easily be isolated. The technique illustrated nevertheless
retains its advantageousness even when these characteristics are not
present,

10.3.6. Conditions at a free surface (continued). Marshak’s boundary
conditions

We now consider the other approach to the determination of the
boundary conditions, namely (ii) of § 10.3.4. In order that the conditions
(10.37) should be a satisfactory approximation to (10.35), it is necessary
that the functions y;(1) should be the first }(N -+ 1) members of a complete
set of functions orthogonal in the interval 0 < p < 1. It is natural, in
view of the important part played by the Legendre polynomials in the
spherical harmonics method, to select the xs() from among the P,(u),
rather than from, say, the P,(2u—1). In the interval 0 <p <1, the
odd-order Legendre polynomials form a complete set, and the even-
order ones form another. The most promising alternatives are therefore

Xs() = By_y(p) (10.51 )

and X1 = Buy_y(p). (10.51b)
Among conditions that can be imposed, the most important is
evidently that relating to the total number of neutrons in the system,

and so the most relevant corollary of (10.35) is that the total number of
neutrons entering the system from outside is zero:

1
[ w0, ppdu=o. (10.52)
0

This last condition, however, is included among (10.37) if (10.51a) is
used, while if (10.51 b) is used, (10.52) will not be satisfied. We therefore
choose (10.51 ), and (10.37) become :

1
[HOmPy () du =0 (j=1,2..,}(N+1)), (10.53)
[]

or, what is the same thing,

1
[oOup¥2tdu=0  (j=1,2..40+1). (10.5%)
) ;

These are known as Marshak’s boundary conditions.

The strongest argument in favour of Marshak’s boundary conditions
is that they automatically include (10.52). The choice of the other
conditions (10.53) involves a certain arbitrariness which is not present
in Mark’s conditions. We should therefore expect that in low-order
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approximations Marshak’s conditions would give better results, but that
the accuracy would increase faster in higher approximations when
Mark’s conditions are used. This is in fact the case. It is usually found
that Mark’s conditions become superior in the Fy or sometimes the P,
approximation.
Since the integrals

1
f Po(p)p?-t du
/]

are gimple rational numbers, Marshak’s conditions are the easier to
apply, except when the technique discussed in § 10.3.5 can be used in
connexion with Mark’s conditions.

In some cases the choice between the two types of boundary condition
is decided by the nature of the problem, irrespective of the approximation
used and of the comparative ease of application. If, for instance, it is
desired to find how the neutron distribution in a system will be altered
by the presence of a strong (but not black) absorber on the free surface,
the conditions to be applied at the free surface are clearly to be the same
with or without the absorber, and in this case Mark’s conditions are
required. Other situations may arise in which the use of Marshak’s
conditions is mandatory.

10.3.7. Conditions at a surface exposed to neutrons

It is sometimes necessary to deal with an exposed surface, i.e. an
external surface on which a known neutron radiation falls from outside.

Taking as before a medium in z > 0 with the surface = = 0 exposed, the
exact condition is

Y0, p) = F(u) forpu >0, (10.54)
where F(u) is some known function. Two cases must be distinguished,
according as F(u) is highly singular (e.g. contains delta functions of )
or is not highly singular (e.g. is bounded for all y).

In the former case, the neutron angular distribution in the medium
will also be highly singular, and the series (10.2) cannot be expected to
converge rapidly. The best method of dealing with such a case is to
divide the neutrons into those coming from outside directly and those
which have undergone at least one collision in the medium. For the first
class, the Boltzmann equation contains no integral term and can there-
fore easily be solved exactly; for the second class, there are no sources
outside the medium and the surface z = 0 therefore becomes s free
surface. If F(u) = §(u—p,), the source term for neutrons scattered at
least once in the medium is simply exp(—z/lu,) with a factor of propor-
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tionality, and a source term of this kind will not introduce any appreci-
able complication. If F(u) is less singular, the source term in the
medium will be more complex, but in this case there is no reason to fear
poor convergence of (10.2) and the problem may be treated in a straight-
forward manner. As in the case of (10.35), the question then arises of
replacing theinfinite set of conditions (10.54) by the most suitable }(N +1)
conditions. Only the first two approaches discussed in § 10.3.4 are here
applicable; the third has no obvious counterpart.

Following the approach (ii) and repeating the arguments of § 10.3.6
we arrive at the conditions

1 1 '
f-/'(O.#)M”“ dp = f Flppb-tdp (j=1,2,.,3N+1), (10.55)
0 1]

which are a generalization of Marshak's boundary conditions.

The justification of Mark’s conditions lay chiefly in the approach
(iii), and so there is in the present case no reason to attempt to generalize
them. It can be shown that, unless F(y)is very smooth, the convergence
may be extremely slow if Mark’s type of condition is used. For instance,
suppose F(u) =1 for 0 < p < pyand = 0 for py < p < 1. In the Py
approximation, the generalization of Mark’s conditions is

$(0,p0) = F(uy) for Pyy(p)=0, p;>0.

As p, varies, the neutron distribution in the system, as given by this
approximation, will change suddenly as 1., passes through one of the u,,
and then remain unchanged until the next y, is reached. Thus, unless N

is very large, the neutron distribution given by this method will be
extremely inaccurate.

10.3.8. A4 thin absorbing slab at an interface between media

We finally consider, for the case of plane symmetry, a layer of purely
absorbing material placed between two scattering media. In principle
such a layer could be treated like any other medium, but in practice this
may be undesirable, since the rate of convergence of the spherical
harmonic method is faster, the smaller the values of |c—1| involved,
except in the case of layers of small optical thickness. This follows since,
unless the optical thickness is small, the main contribution to y(z, u)
inside a layer comes from the roots 4w, (in the notation of § 10.2.3) of
(10.7), and so the method cannot converge any faster than the quantities

12: (@n+1)F (p){A1q Gulny)er =+ 4_, Gy (—v)er=l  (10.56)
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for the various media converge to their ultimate values, This is governed
for each medium by the rate of convergence of (10.22) for » = I/L, and
this is the faster, the smaller [}/L], i.e. the smaller |c—1| for the layer in
question,

If, therefore, the absorbing layer is not thin optically, while for the
other media in the system ¢ is not very different from unity, then to
treat the absorber the same way as the other media would mean going to
& higher degree of approximation than would otherwise be necessary. It
is for this reason that a special boundary condition is devised for the
case in question,

Let the absorbing layer, of negligible geometrical thickness, be
situated at z = 0, 80 that 2 > 0 and z < 0 are the scattering media on
each side of it, and let the optical thickness of the layer be . The exact
boundary conditions are

PO+, ) = eMfh(0—, 1) (> 0);
$(0—,p) = eMBP(04-,p) (< 0).

To reduce these to the finite number of conditions needed, we again
apply the argument of § 10.3.6, obtaining

(10.57)

1 1
j YO0+, plut -1 dp = J e Mg(0—, puti-1 dp

[ ] 0 (j = lr 21"-, i(N"l' 1)).
J 90—, w1 dy = [ M0+, i1 dps (10.58)
-1 1

In order to apply these conditions, a lmowledge is required of the
functions '

P
B (2) = f e i, (10.59)
144
1

which are a generalization of those introduced in (6.2) and (6.32). These
functions have, however, been tabulated by Placzek (40). The conditions
(10.58) are the generalization of Marshak’s boundary conditions to the
present case. The corresponding generalization of Mark’s conditions is

WO+, p) = eMd(0—, 1), Pyalu) =0, 20,
(10.60)
but it can be shown by the argument of §10.3.4 that this is also the result
obtained by treating the absorbing layer like the others and then
eliminating its constants to relate the angular distributions in the two
scattering media. The boundary conditions (10.60) will therefore, by
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the reasoning at the beginning of the present sub-section, lead to less
acourate results than (10.58).

We here conclude our analysis of various types of boundary condition
for plane symmetry. In gemeral it is necessary also to discuss the
boundary conditions at the surfaces of gaps, but we have seen in § 8.6.1

that in plane symmetry a gap can have no effect, and the two media
adjacent to it can be regarded as contiguous.

10.4. Multi-layer problems

The boundary conditions discussed in § 10.3 allow us to determine
the 4,in (10.8'), or its analogue in the presence of sources, for the various
media in the system. If there are ssuch media, and the Py, approximation
is used (N being odd), there are 8(N 1) such conditions with s(N--1)
unknowns, and it is desirable to systematize the process of their solution.

Let us first consider one particular medium, and suppose for simplicity
that ¢ = 1 and that this medium contains no sources. Let(z)and ¢(z)
be vectors in a space of N+4-1 dimensions, with components

'/‘o(x)» ‘ﬁl(x)’-"’ '/’N(z)

and
A, exp(vyz/l), A_, exp(—wv, z/l), A;exp(vgz/l),...,

A yv+09XP v/, Ay 9XP(~vyiy41y2/l), Tespectively.
We define the matrix

Go(“l) Go(“"l) . Go(""’i(zvu))
RN(c) = Gx("1) G1(“"1) . Gl("""i(Nu)) , (10.61)

Gy(v,) GN(“”x) . GN(“"MN-H))

its inverse matrix -1(c), and the diagonal matrix (vr), whose diagonal
elements are exp(v,r), exp(—v,1),..., XP(Vyv+p7)s €XP(—¥yvap7). In

this notation, formula (10.8’) can be rewritten
Y(z) = N(c)p(), (10.62)

and hence we have also

P(x) = N-YcW(), (10.82")
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whilst the definition of ¢(z) implies that

(@) = 3(v”‘;”')<p(x'), (10.63)

provided that z and 2’ both lie in the medium under consideration.

The matrix M-1(c) is easily obtained. The recurrence relations (10.1¢)
for G,(v) (n > 1) are the same as for P,(u). Using these together with
(10.11), we therefore find as in the proof of (10.42)

(1) Gy 13 (V) Gy () = G 41 (%) G ()]

- (%_é) D (@ 1-e8,)G,0)0,0). (10.64)

n=0

Putting here m = N, v’ = v, and passing to the limit as v - v;, where
v; and v, are any two solutions of (10.12) (v_; = —v;, v_p = —v,), we
- obtain the following orthogonality relation between the G, (v;):

3 (n+ 18016, 5)0,0y) = By ),

where h(v) = (N+112GQy(v) dGy .y (v)/dv. (10.65)
{ Using this orthogonality relation, we see that the matrix

(1—0)Gy(r)/h(v,) 3G, (n)/h(w) c o o @NHDGR)Rw)
(1=0)Go(—n)/h(—,) 3G(—wm)/M =) . . 2N+ 1)Cy(—v)[k(—v,)

=)@ vyl —vypn) « -+« EN+DON(— vy, ) M=y
(10.66)

multiplied on the right by (10.61), gives the unit matrix. Thus the matrix
(10.68) is simply M-1(c), so that all the matrices appearing in formulae
(10.62), (10.62'), and (10.63) are known, and no numerical inversion of
matrices is necessary. Combining the above results we obtain

Yiz) = m(c)%(vz“l“)m—l(c)¢(x'), (10.67)

. provided that z and z’ both lie in the medium under consideration.

On proceeding to consider the complete system of media, we must
define the above matrices separately for each medium. If the ith medium
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lies between x,_; and z,, and if ¢,, I;, and v, are the values of ¢, I, and v
in this medium, then formula (10.67) gives

V) = ReB( AT NN (087)
By applying this formula successively to the various media, we can
eliminate all the media except the two extreme ones and reduce the
system of 8(N 1) equations to one of N1 equations only. As we have
already remarked, this procedure does not involve any numerical inver-
sion of matrices.

It has been assumed above that there are no sources in the ith medium,
and that it is contiguous with the (i—1)th and (s-+1)th media. The
changes required in (10.67’) if these assumptions are invalid are easily
found.

If ¢ = 1in one of the media, the procedure is as follows. The product
R(e)F(v[z—a)/)R-(c) is calculated; where ¢ occurs explicitly, it is
regarded as a variable parameter, as are v,1, Whilst for the other v; the
values corresponding to ¢ = 1 are used throughout. We then pass to
thelimitasc > 1,v,, - 0,and¢—1 = O(*,). Thatis, formula (10.67")in
such a case would be taken as

$(z) = {},i_g;[m(c)‘:x_(v"‘l")m—lw)]}xb(x’»

A similar procedure is necessary when |c—1| is very small, although
not zero.

10.5. The P, approximation

The lowest possible spherical harmonics approximation is the P,
approximation. It resembles the diffusion equation, and differs from
all higher spherical harmonics approximations, in that no account is
taken of the transient terms, since equation (10.7) has in this approxima-
tion only one pair of roots.

The equations (10.4) in the P, approximation are

W)+ 172 ) = 0
. (10.68)
Jol@)+3 () = 0
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On elimination of ,(z) they give

vie) = L2y ) (10.69)

and this is the form taken by the diffusion approximation equation (8.2)
if, instead of the correct expression for L,

1 L, L4l

-5 == ?l log L_-l’ (5.5)

. we use the approximate result
1—c = }i¢/L2,

At the interface between two media, the conditions (10.30) are that
" to(z), the flux, and yy(z), the current, are continuous. We have seen
that in the diffusion approximation these are not the best possible condi-
* tioms, (8.12) and (8.13) being superior. However, the relation (6.37)
" between the current and the flux is now approximately replaced by the
. second of (10.88), and hence, expressing the current in terms of the
gradient of the flux and using the ratios of the quantities involved, we

have Ui(@)do(z)  continuous,

", which is the same as (8.15). In the absence of sources, therefore, the
discrepancy between the interface boundary conditions in the diffusion
- and P, approximations is compensated at the expense of an error in the
" diffusion length.
: In order to test the accuracy of the free-surface boundary conditions
in the F, approximation, we shall calculate the value of the extrapolated
end-point z,, defined by (6.23); to illustrate the procedure in higher
approximations, however, we shall use not (10.69), but the functions
G,(v). From (10.10) and (10.11)

60 = 6,0+ 250] = -1[1-27),

p
and therefore from (10.12)
v= +~3(1—c)t,

80 that G = 9_:_1. = — (113:.)* signv,
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and combining (10.2) with (10.8")

() = &{A'Fe"’”[l—-,u,~/3(1—-c)*]+A-e""/'[l+;m/3(1—c)*]}.
(10.70)

Let the medium occupy the half-space > 0 with the free surface at
# = 0. According to Mark’s boundary conditions, ¥(0, 1) as given by
(10.70) should vanish at the positive root of Py(p) = $(3u2—1) = 0, i.e.
at u = 1/¥3, and this gives

A1~ —c]+ A1+ (1—c)] = 0. (10.71)
Thus (10.70) gives

do(z) = constant x [smh % +(1—c)t cosh ?] (10.72)

The definition of z,, however, is yiy(—z,) = 0, and (10.72) therefore gives
8inh(vzyfl) = (1—c)t cosh(vz,/l),

or, on substituting for »,

(20)p, Mark = 75(11::? tanh-1(1—c)t = ;5 [1 +-1-;1+S-£-§°—)’+...]

o 0-58[14+-3(1—c)+..]. (10.73)
According to Marshak’s boundary conditions, we should have

1
f $(0, p)u dp = 0,
[

and on applying this to (10.70) we obtain, instead of (10.71),

-f5 o 59 -
and hence, instead of (10.73),
s = g o5
= .2;[1 +§(1—c)+i_g(l-c)’+...]

o 0-671 [1 +%(l—c)+...]. | (10.74)
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Comparing these with the exact result (6.29), we see that, if |[c—1| is
small, either boundary condition gives a fair approximation to z, even
in the B, form, while the error using Marshak’s boundary condition is
considerably smaller than that using Mark’s, as was anticipated in
§ 10.3.6.

10.6. A remark on orthogonality

To conclude the present chapter, we shall discuss one further question.
It is known that, for a bare homogeneous source-free body, if ¢ is treated
as a variable parameter, then the exact eigenfunctions p(r) (i.e. y,(r)) are
mutually orthogonal (see § 4.7, formula (4.30)). For a source-free system
of several media in a fixed geometrical arrangement, where the value of
¢ in the ith medium is c,o+yc,,, say, with y regarded as a parameter,
the corresponding eigenfunctions satisfy the orthogonality relation

=) [[[ e Wo o) aV =0, (10.75)

where y; and y, are two eigenvalues and ; ,(r) and i, ,(r) are the corre-
sponding eigenfunctions for the neutron flux y,(r), while ¢,(r) and i(r) are
functions equal to ¢,, and I, when r is in the ith medium.

It is also kmown that approximate solutions do not always have such
properties, as, for instance, the diffusion approximation (see § 8.8). The
question arises whether the solutions obtained by the spherical harmonics
approximation have the property of orthogonality. We shall show that
they do, at least in the odd-order approximations.

We first take the case of plane symmetry, with Mark’s boundary
conditions and all layers treated in the same manner. The vacua outside
the system can be replaced by black half-spaces, and the free surfaces
are thus replaced by interfaces. In an odd-order approximation, the
spherical harmonic moments ¥, (z) and 4, (%) corresponding to the
eigenvalues y; and y, are continuous, so that, using also the conditions
at infinity,

«©
z x
[ et g Mt
= P s OOWin 5(00) —thy o —~0ONfy, s(—00) = 0. (10.76)
The first equation (10.4) for the y,, ; is multiplied by y,; and integrated.
The quantity dy,/dx is eliminated by integration by parts, using
(10.76), and dy;y ;/dx is then eliminated by the second equation (10.4) for
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the ¢, 4, and 8o on. We thus obtain

f E"(i)_-l%z?);cl_(——x) '/'o,t(x )‘/’04 (¢) dz

-

= f bosleHhsle) 15+ f ose) 2D g

Uzx)

o

- f [Yo4(x) ‘/’o,j(x)+3'/’u(x)‘/‘u(x)] 42 f o) B2 gy

Uz)

0

=~ | Zentuy, 4(x)~/ln,;(x)

-~

l()

(m+1) f @) 2d®) gz (m 0da)
+
(m+41) J‘ Y g) L) d¢"'+’ 42) dxz (m even).
(10.77)

‘ Applying this result with m = N, we find, since in the Py, approximation

difiy11,5/d% i8 neglected, that the right side of (10 77) is unaltered if on the
left side y; is replaced by y,. Hence

(=7 f D fodaoyla) de = o. (10.78)
For the black half-spaces which have replaced the vacusa outside the
system, ¢,(x) is zero; (10.78) is therefore identical with (10.75), and this
proves the result when Mark’s boundary conditions are used.

Two results have been proved above: firstly, that irrespective of the
boundary conditions used at the free surfaces (x = a and z = b, say),

b
f c_ogfl‘;‘_(gﬂ(x_) Yo(TWpos(x) dx

—z(2n+1) f bW @) 4 O(5)— (),

(10.79)

U(z)

where

O() = yy (@Wpo 4(x) + 2y 4 (2 (@) + ...+ N Yn(@y_y4(x); (10.80)
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and secondly, that if Mark’s conditions are used at the free surfaces, then
{(supposing b > a)

N 3 dx

= — 1 =
0@ == 2@+ [ Y fese) =, (ot
and similarly for ®(b), and these are unaltered by inberchahging iand j.
In order to prove (10.75) when Marshak’s boundary conditions are
used, it is therefore sufficient to prove that in the latter case, though
®(a) and ®(b) are no longer given by (10.81), they are still unchanged

by the interchange of { and j. We show this as follows. For Y (x, pn), say,
Marshak’s boundary conditions give

1
[ Paalsbla, ) dpp = o (10.82)
0

Substituting from (10.2), we find, since the contribution of odd .moments

other than y,_, (a) vanishes by the orthogonality of Legendre poly-
nomials,

: HN<D)
Yar-1,8) = — J’ Funle)” 3" (0 +1)B (1 )usgla) dps.  (10.83)

The recurrence relations between the Legendre polynomials give
Fi(uhos(@)+[2P, (1) + 3P (1) s (0)+ ...+

HE=DPacalid+ VB ige) = 6" 3 (84 )Pl (o),
and so, substituting (10.83) into (10.80), we have

®(a) = — f B3 @+ D (W @)][ S (DB ()]
0

and this is unaltered when § and j are interchanged. This proves (10.75)
when Marshak’s boundary conditions are used.

The assumption that all media are treated in the same manner amounts
to supposing that there are no interfaces at which (10.58) should be
satisfied rather than (10.30). It is not yet known whether the presence _
of such interfaces will cause (10.75) to be no longer satisfied; it can be
shown by direct investigation that in the P, approximation (10.75) holds
even when such boundaries are present.

So far only the plane case has been discussed. In order to avoid having
to return to the topic of orthogonality, we indicate here how these results
may be extended to other geometries, but we shall discuss only the cases
where the internal boundaries are interfaces with the media in contact
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everywhere, and Mark’s conditions are used at the free surfaces, so that
they also reduce to this kind of interface, ' :
The equation determining y(r, Q) is

1 _ %(T)+yie(r)
Q. gradyy(r, Q)4 753) th(r, Q) = @l tou(r)-
This is multiplied by [y(r, ) +y(r, —&2)] (where —Q is the direction
opposite to ), and added to the equation determining ¥y(r, ) multiplied
by [4h(r,R)—y(r, —Q)]. The result is integrated over all , and at the
same time L is replaced by — in the term

— , —R)R. grad y,(r,Q) dQ.
This give [[ s, —@. grady,r. )

[[ @ grad(yr.0u,r.2)+9. grad gy, r, ~2 a0 4

2 [ @tr, 0 75 — 2 WA g gy ). 104

This relation has been derived on the assumption that ,(r,Q) and
(r,2) are the exact angular distributions corresponding to y, and y,.
It is evident, however, that the same arguments will apply if y,(r,S2)
and y(r,Q2) are interpreted as the angular distributions in the P,
approximation, provided that the corresponding i, (r) and ¢, ,(r) are
continuous; this will be so, in odd-order approximations, in most of the
oases met, with in practice. The equation (10.75) now follows by integra-

ting over all r and subtracting the same expression with § and J inter-
changed.



XI

THE SPHERICAL HARMONICS METHOD FOR
SPHERICAL GEOMETRIES

11.1. The differential equations and their solution
W2 now turn to spherically symmetrical systems, where the neutron
flux depends only on a radial coordinate. The angular distribution

J(r,82) can then depend only on r and on the angle between 2 and the
direction in which r is measured. The cosine of this angle is clearly

p=(r.Q)r (11L.1)
if the centre of the system is taken as origin 8o that |r| = r, and so
P(r, ) = Y(r, p) = Y(r,[r.Q)/r). (11.2)

In order to transform the Boltzmann equation (4.3) to the variables
r and u, we first caloulate the expression for . grady(r,2) in these

variables. Since u depends on r as well as on, it follows that u changes
when r varies, even if Q is constant. We thus get

Q. grad y(r,Q) = . grad y(r, [r.Q]/r)
= p(8g/or)+(oy/ou)[R. grad(r .Q)/r]. (11.3)
But Q. grad[(r.Q)/r] = (Q.Q)/r—(r.Q)(2. grad r)/r?,
gradr == r/r, and Q.Q=1,
since & is a unit vector, The expression (11.3) therefore becomes
a‘/’ % —;F Z;/:

and the Boltzmann equation (4.3) becomes (since the scattering is
assumed isotropic)

“Wgr,y)_}_l—r#’ 3!/';:‘#)_,_«11 ) _ ”' Y, p')dO.  (11.4)

We can now proceed as in the plane case, multiplying (11.4) by
(2n+-1)P,(u), integrating over all u and eliminating &y/du by integration
by parts. Thus, if the i, (r) are defined by (10.3) as before (which implies
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that ¢(r, u) is again given in terms of the y;,(r) by (10.2)), the equation
(11.4) gives

(n+1)[§;+’i;—2]¢n+,(r)+n["’ e R

i
+ent) =By () = 0. (15)

In the Py approximation, this infinite system of equations is converted

into a finite one by neglecting yiy,,(r) and retaining only the first N1
equations of (11.5).
Tt is easily verified that the resulting system of equations is satisfied if

) = Gal0p) o Kna(—0y 1D (11.6)

where K,(z) is the modified Bessel function of the second kind, the G, (v)
are defined and discussed in§ 10.2, and v; satisfies (10.12),1.6. Gy, (v;) = 0.

This may be shown by using the recurrence relations of Bessel funetions,
namely

g; [#K,()] = —2'K,(s) snd diz [K,(2)] = —2~K,a(2);

see Whittaker and Watson (52), pp. 378f. We use throughout Mac-
donald’s definition of K,(2), i.e. K,(z) = }n[I_,(2)—1,(z)]cosec sm.

The condition Gy.,(v;) =0 arises since in the Py approximation
Yy.41(r) must vanish identically.

The general solution of (11.5) in the Py approximation can then be

written
balr) = 3 433, 6ol (w—z—f,)* J a—y (L7

where the 4, are constants of integration, and the numerical factor is
introduced for convenience. Substituting (11.7) into (10.2) we obtain
for the angular distribution in the Py approximation

1 < 20 \}
ey == . Agyy D (et 1)(—) Ep(—vyr[DGu0)Pa(p). (11.8)
F) .

gy ! Tn’,r

Since the v; occur in pairs, which in the notation of § 10.2.3 are v; and
v_; = —v;, the relations between K,(z), K,(—z) and L(z) give

bury = 3 o))y Kaalr 0+ By sy (117

2
>0 V4
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If ¢ = 1, the equation (10.7) has a double root zero, and the contribu-
tion of this to y,,(r) is easily found by direct substitution into (11.5) to be

n! +1
-2n_+_iA(; + BS,, (11.9)

where, of course, n does not exceed N in the Py, approximation.
The relation (11.9) can be deduced from the properties of the @, (»)
as follows. The K, ; in (11.7°) are elementary functions:

@UmrPK, oy(—vr[l) = e x a polynomial of order (n-+1) in lpr,
, (11.10)
If v is the root of (10.7) which tends to zero as ¢ -> 1, then @y ,(v) = 0
gives forn < N, @, = 0@, _,) = O("). Thus, for y — 0, the quantity
V@ (—r) (U mr K, yr/l)
tends to a numerical multiple of (I/r)*+1, On calculating the numerical

factor, we find the first term of (11.9). Similarly the second term of
(11.7°) gives the second term of (11.9).

11.2. Discussion of the solution

In the present section we consider two questions, the reason why the
solution in § 11.1 involves the same @, functions as the solution for the
plane case, and the reason why, on substituting (11.9) into (10.2), we
obtain the first N4-1 terms of an everywhere divergent series.

11.2.1. The reappearance of the functions G, (v)

The relation (11.10) shows that the expressions (11.8) differ from the
corresponding ones for the plane case only by a polynomial in 1/r. If
r inoreases indefinitely, the solution for the spherical case should become
that for the plane case, and since the v; are independent of position,
this can only be 80 if they are the same as for the plane case. This suggests
also that the same values of v; should appear for other geometries as well,
and we shall show in § 12.2 that this is true.

We now indicate why the functions @,(v) should also figure in the
solutions for both the plane and the spherical case. Consider an infinite
medium and a spherically symmetrical solution of the equations, regular
at the origin. This solution can be regarded as a superposition of plane
waves, and we should therefore have

brw) = [[ e 20,290 a0, (1L.11)

where ¢, (z, ) is the appropriate solution for the plane case. If this
latter has been determined in the Py approximation, and if we assume
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for simplicity that it involves only one v; and that 4, == 1, distances
being measured in units of I, then

N
Inlmn) = en= > ('L 10l P,

n'=0

Substituting into (11.11) and using (11.1), we find for the nth moment
Pnlr)

1 S |
halr) = = f f dQ f f dQ, eV:r.noP"(Er_.) 2 @G )RR .2),
w0
which, by the properties of Legendre polynomials, reduces to

2n+-1
i) = 2E1 g ) f f dQ f f dQy 4" B, (r . QPR . Q).
The appearance of the @, functions in the solutions (11.6) is therefore

not a coincidence, but a consequence of their appearance in the plane
cage.

11.2.2. The asymplotic angular distribution

The equations (11.5) can also be regarded as a means of determining the
higher moments of the angular distribution in g spherically symmetrio
problem, when the neutron flux is known. To do this, however, requires
some caution, as we shall now see. .

From (10.27) and (10.28), the function Ky(Lv, 7/l) will vary with r
much more slowly than the other Ky(+v;r/l), and so, if we consider a
point far enough from the boundaries, the value of Yo(r) there will be
almost entirely due to the contribution from the roots =+, of (10.7)
(the asymptotic term), while the contributions of the remaining terms in
(11.7) will be negligible (the transient term). This, of course, is no more
than we have said already in Chapter V.

The quantities G,,(v) have been shown to decrease (on the average)
a8 n increases, and the smaller v, the faster this decrease takes place.
The ratio @,(1v;)/@,(+v,) for j > 2 will therefore increase with n. For
& given system, the distance from the boundary at which the transient
terms can safely be neglected will thus increase with the order of the
moment considered; conversely, at a given point the order of the
moment cannot be increased indefinitely if the transient terms are to
remain negligible,

The convergence of the series ) (2h+ 1) (r) Py () therefore gives no
information about that of the series :

2 (Cn4-1)y (1) Po(p), (11.12)
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. since ¢,(r) may be the small difference of two large quantities i, ,,(r)
¢ and —i, ¢ (r). In fact, as we have mentioned, the substitution of (11.9)
" into (10.2) gives only an asymptotic series. )

We now derive, for any geometry, the sufficient condition for (11.12)
© to be convergent and not merely asymptotic. Let a volume V be filled
with some material, 80 that i, ,,(r) is a particular analytical function,
the same throughout V. Let ,,,(r, V) coincide with Poae(r) in ¥V, and
" be given by the same analytical function for r outside V. Then if
. Yo.ua(T, V) is regular in all space, the series

@ n

2 2 Combumanl®Pun(® (11.12')

N=0 m=—
© (anobvious generalization of (11.12), with C, ,, normalization coefficients)
will converge for all r in V.

The proof is as follows. By definition, i, 4,(r, V) is & solution of

| (V2= 1/} Wioaa(r, V) = 0, (1L.13)
where Ly, is the diffusion length for the material in V; and we have seen
in Chapter V that, if the solution of (11.13) is regular in all space, then it
is also the exact solution of the integral equation for the infinite medium.
' For the infinite medium, the angular distribution can be found from
(4.16). Let this distribution be y,(r,, V); it is a well-defined continuous
function, and therefore its expansion in spherical harmonics, of the same
form as (11.12’), converges for all r. We now compare the moments
Y m,o(T, V) which appear in this last series with the corresponding ones

¥n.m,aa(T) which appear in (11.12°), for rin V. For the plane and spherical
* cases, these moments are uniquely defined when the zeroth moment is
given, and we shall see in § 12.1 that this is true for any geometry, at
least as regards the asymptotic part. Since, however, Yoo(r, V) was
constructed so as to coincide with i, as(r) for r in V, it follows that for
r in ¥V each term of (11.12') is identical with the corresponding term in
a series that is known to converge, and so the result is proved.

In the plane case, any solution of (11.13) which depends on only one
. Cartesian coordinate (z, say) is necessarily regular in all space, and

therefore the series corresponding to (11.12) will always converge in the
case of plane symmetry.

In the case of spherical symmetry, a solution of (11.13) may have
a singularity at the origin, but is always regular elsewhere. Thus if
" Yo.au4(r) == Yg,n,(r) in the ith medium and is elsewhere defined by analytio
- continuation, then the series (11.12) will converge for r in the ith region
if g, 8,¢(0) i8 finite, but not otherwise. This statement involves proving
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that the above condition (o,0(r, V) regular in all space) is necessary as
well as sufficient for (11.12’) to converge for r in V, but this follows, at
least in the spherical case, because ¢, = 1 and Po,08,4(0) = c0 makes
(11.12) diverge for all 7 in the ith region, and for ¢, # 1 the same can be
proved from the asymptotic behaviour of K, 4(—vr/ly and @Q,(v) for
large n.

For instance, if there is a spherical core in an infinite slightly capturing
(¢ < 1) reflector, then for the core Yo.as(r) is regular for r = 0 and
consequently (11.12) converges everywhere in the core; for the reflector,
however, i, ,,(r) must vanish at r = oo, and it is a solution of the diffu-
sion equation. Its analytical continuation cannot therefore be regular
atr = 0, and so (11.12) cannot converge for any point in the reflector.

11.3. The boundary conditions
11.3.1. Conditions at the origin
We now determine the boundary conditions for the solution of (11.5).
In the absence of sources, the exact solution of the integral equation
(4.15) is regular in any region, and so the solution of (11.5) should also
be regular. In the plane case, the corresponding condition was auto-
matically satisfied for all z, but in the spherical case it is satisfied only
for r 0 (see (11.7), for instance). Thus, apart from the boundary
conditions, we must also impose a condition at the origin
¥(0) sa finite (n =0,1,...,N). (11.14)
The formula (11.7°) shows that (11.14) actually represents HN+1)
conditions, i.e. exactly the number required. '
If there are distributed sources, but the source term is regular at
r = 0, the same argument as before leads to the conditions (11.14); if
the source term is singular at r = 0, & slightly more general condition
may be derived as follows. In physical applications (r, ) should
be positive, while the Legendre polynomials satisfy the inequality
|Pu(w)] < Pyfps) for |u] < 1. Thus (10.3) gives
()] < (r). (11.18)
Using (11.7) and (11.5), it is easily shown that, in the absence of sources,
(11.15) implies (11.14). The former therefore provides the necessary

#(N +4-1) conditions in a form which can be used even if the source term is
singular at the origin.

If there are concentrated sources, however, the procedure is that
given in § 10.3.7; that is, the neutrons are divided into those that come
directly from the source and those which have had at least one collision
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in the medium, The approximate method is applied only to the latter
group.

11.3.2. Boundaries already encountered in the plane case

We now consider the conditions at the actual physical boundaries of
the system. The conditions at infinity will be essentially the same as
in the plane case, except that a supply of neutrons from infinity is now

understood in the sense of total supply rather than supply per unit area,
and is given by

lim 4zr%),(r) rather than by lim y,(z).

The conditions at the interface between two media in direct contact
are purely local conditions and will not depend on the geometry. They
are therefore the same as in the Plane case. This also applies to Marshak’s
conditions at a free surface.

The situation with respect to Mark’s conditions is more complicated.
These were derived in the Plane case by replacing the vacuum by a black
medium, applying the interface conditions and eliminating the constants
of integration for the black medium. The same procedure applied to the
spherical case gives a set of conditions of the form

.f‘,'ﬁ,.(a)UM(lb/a) =0 (j=1,2,..,}N+1), (11.16)

where a is the value of r at the free surface, b, is the assumed mean free
path in the black medium, and the U, ; are some functions of ly/a, which
for [/a = 0 become

Tps(0) = (2n-+1)Py(uy),
80 that in this case (11.16) coincide with the plane form of Mark’s
oconditions. ’

Xf a non-re-entrant system is surrounded by a purely sabsorbing
medium, the neutron distribution in the system cannot depend on the
mean free path in the absorber. The appearance of , in (11.16) is due to
the fact that the boundary conditions cannot be exactly satisfied in any
approximation of a finite order.

Normally, I, is taken equal to zero. Mark’s boundary conditions then
take the same form as in the Plane case. This assumption is simple from
the point of view of numerical work, and the magnitude of the error
committed at the free surface in a given order of approximation is
independent of the curvature of the surface, i.e. is the same as in the plane
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case, and for the plane case the convergence of the spherical harmonics
method is good. Further, the application of (11.16) with 5> ain low-
order approximations has led to impossible results.

However, as at the end of § 10.3.6, there may be situations in which
his i not the best course. For instance, if it is required to find the effect
on the neutron distribution of surrounding the system by a strong but
imperfect absorber (0 < ¢ < 1), then the calculations should clearly be
carried out for situations as similar ag possible, and this means that
the perfect absorber referred to in the derivation of (11.16) should be
considered to have the same mean free path as the imperfect absorber
whose effect is being assessed. ,

It should also be remarked that the technique described in § 10.3.5 for
the application of Mark’s boundary conditions cannot be extended to
the spherical case. This concludes our discussion of conditions at the
interface.

The conditions at an exposed surface (§ 10.3.7) are again of Marshak’s
type, and so are likewise applicable irrespective of the geometry of the
system.

In the case of a purely absorbing medium of negligible geometrical
thickness between two other media, there were in the plane case two
alternative sets of conditions: (10.58), which are more reliable, and
(10.80), which are simpler. The former are of Marshak’s type, and so
applicable at onoe to the spherical case. Though the latter are of Mark’s
type, it follows from the nature of the layer that its radius of curvature
must be very large compared with the mean free path in it. The solution
within the layer will therefore be indistinguishable from that in' the
plane case, and so the conditions (10.60) can be taken over without
modification. In this case we do not encounter the ambiguity which
Was present in the case of (11.16),

11.3.3. Conditions at the surfaces of a gap

In the case of plane symmetry, gaps have no effect, as we have seen
(§ 10.3.8), but in the spherical case they must be taken into account, and
this may be done in either of two ways. The gap may be treated as a
medium where the mean free path is infinite, and then the interface
conditions are applied; or, the surfaces of the gap may be considered
directly, and then the exposed-surface conditions are applied (10.55).

We first consider the former approach. Let the inner and outer sur-
faces of the gapber = gandr = b respectively. Since in the gap ! = oo,
the equations (11.5) for the 8ap separate into two groups, one involving
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* only the odd-order moments,

(di,+§)¢1(r> —o,

d 4 d 1
3G+t +2{E— i) = 0. | 1t
—9\
Nz +%E ‘)¢~(r>+<zv-1)(§,—” =2in-a(r) = 0,
: and the other involving only the even-order moments,

2[5+ Jilr) o+ ble) = O,

(N—l)(di,+§)¢N-,(r>+<N—2)(;;‘-,—1"7‘3)4:”-3«) =0, | (L

d N-=-1
e
" where N is, as usual, assumed odd. Each of the equations (11.17) is
exact, while the last of (11.18) has been distorted by the omission of the
term in ¢y ,(r). Thus, by solving (11.17) and applying the interface
conditions (10.30) (also exact), we obtain the exact relations between the

~ odd-order moments on the inner and outer faces of the gap. These are
found to be

a%)y(a) = by (b), “‘[3'/’3(“)_3'l'1(“)] = b4 3yy(b)— 3¢, (b)],
- a*{Byy(a)— 14y (a)+ 0y (a)] = BOBufy(b)— 144f5(5) -+ 8¢ (b)], ete. (11.19)

. Similarly, solving equations (11.18) and using the interface boundary
conditions, we obtain

Yo(@)+5¢h3(a) +16414(@) +-... = iy(b)+Bry(b)+ 163S(B) +-...,
0RO+ 8a) ] = S [4a)+84 )+,
andin general

e+ LI )]

= ,;1;.[¢u(b)+@'*';——3%ﬂ¢m,(b)+...]. (11.20)

" However, since the last of (11.18) is incorrect, the relations (11.20), with
the sums terminated, in practice, after the term in ¥y, are not exact;
further, if the sums are not terminated, the resulting series may converge
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very slowly, if at all. Unless one goes to a fairly high a.pproxlmatlon,
therefore, (11.20) may be quite inaccurate.

We therefore consider the second approach mentioned at the beginning
of this sub-section. In this, the exposed-surface boundary conditions are
applied to the surfaces of the gap, and we first take the inner surface.

If a neutron enters the gap at a point b of the outer surface and first
meets the inner surface at a after travelling a distance R in the gap, and
i, p’ are the cosines of the angles between its direction of travel & and
2, b respectively, then in the case considered both p and ' are negative.
From the triangle formed by a, b, and the path of the neutron in the

gap, we have b® = a3+ R'—2aRy,
where a and b are the magnitudes of the correspond.mg veotors, and -
by’ = au—R.
Eliminating R, we find
p' = —(b*—a2+a?ud)/b, (11.21)

The Boltzmann equation in the gap is simply &.grady(r,) = 0,
i.e. Y(r,Q) is a constant along the path of the neutron in the gap. In
particular, §i(b,Q) = yi(a,), that is, Y(b,p’) = yia,pn), which from
(11.21) gives

$(a, ) = Y(b, —(b*—a+atun)hfb). (11.22)
Substituting this into the exposed surface boundary conditions (10.55),
we obtain

[]
[ 1M1 T400) + Sy 0) + B35 — e+ s
-1

0
= [ w2 oy— F0r—atratu ) +
=1

2_.n2
+§( ”——“,,;F#—l)%(m—...] dp (j=1,2. HN+)).
' (11.23)
The conditions for the outer surface, which we call (11.23'), can be
derived similarly. In this case, it is necessary to bear in mind that a
neutron meeting the outer surface of the gap may have come from either
surface, and the integral on the left of (11.23) will therefore be replaced
by the sum of two, one from 0 to [1—(a/b)?]t and the other from

[1—(a/b)?]t to 1.

It can be shown that on eliminating the even moments between (11.23)
and (11.23') we obtain (11.19), so that using (11.19) and either (11.23) or
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(11.23") is the same as using the latter two together. However, if the
integrations are effected, when the order of approximation increases the
series in (11.23) converges much more rapidly than that in (11.20), and
80 the latter is much less accurate in a finite approximation than (11.23)
and (11.23’). The beet procedure, since (11.23) is simpler than (11.23"),
is therefore to use (11.19) and (11.23). -

Note added in second smpression. We have seen in § 10.4 that, in the
case of plane symmetry, the calculation for multi-layer problems can be
appreciably simplified by using orthogonality relations between the
Gy(vy); see the formula preceding (10.85). It has recently been shown
(B. Davison, Canadian J. Phys. 35, 55, 1957) that the treatment of
multi-layer problems can be similarly simplified in the case of spherical
symmetry: the 4,in (11.7) can be expressed in terms of the P(r) as

4= (f 2 () S i

| x{(n+1)am(v,)K,.+.(”',—’)+na,.-1(v,)K,.-,(5,—’)}. (11.24)

Combining this with (11.7) and the condition of continuity of the i, (r)
at the interface between two succeasive layers, we see that, if the con-
stants 4, for one layer are known, those for the next layer can be obtained

by simple multiplication of matrices, without regorting to numerical
inversion.



XII

THE SPHERICAL HARMONICS METHOD FOR
OTHER GEOMETRIES

12.1. The general forinulatlon qf the spherical harmonics method
12.1.1. Preliminary ‘

WE now consider the extension of the spherical harmonics method to
other geometries. In the general case, the angular distribution y(r,)
will depend on both the angular coordinates of L, and consequently,
instead of expanding y(r,) in Legendre polynomials in £ .82, (where
L, is fixed for each r), it is necessary to expand it in general spherical
harmonics. In the most general case there will be 2n+-1 harmonios
of order n. The procedure is, however, essentially the same as
before.

Let P, () (m = —n, —n-+1,..., n) be the 2n+4-1 spherical harmonics
of order n, and ¢,.(r) = [ [ (r,Q)P, (R)dQ the ocorresponding
moments. In the Py approximation, we multiply the Boltzmann
equation with isotropic scattering ((4.4)) by P, () for all n < N and
all m for each n, and integrate over all Q, neglecting moments of order
N+1 and greater. We thus obtain as many differential equations as
there are y,, ,(r) involved, and so, by solving these equations with the
appropriate boundary conditions, all the moments in question can be
determined. '

In the case of plane or spherical symmetry, the form of the solution
of the differential equations could be guessed immediately, but in the
general case thisis nolongerso; further, thenumberof momentsinvolvedis
rather large—in the P approximation it is 1 +3+... 2N 41 = (N41)2,
It is therefore desirable to systematize the solution of the equations, and
in particular to reduce them by elimination to a series of equations in
one variable only.

The most elegant method of performing this elimination is by the
use of spherical harmonics tensors. Since the properties of these are
not widely known, however, we shall use a more elementary, quasi-
vectorial, procedure. In the present section we discuss the method in
general terms, in the next we deal with the solution of the resulting
equations, and in § 12.3 we illustrate the results in terms of a finite
cylinder,
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12.1.2. Notations and properties of spherical harmonics
Let U be a vector of arbitrary magnitude U in the direction of Q:
v U=UQ. (12.1)
In dealing with functions of the two vector variables U and r, we dis-

) tinguish the operators grad, div, and V2 taken with respect to them by
* corresponding suffixes:
Vi = 3o(UQ, )\ +2*/a(UQ, )2 +2%o(ULQ,)%,
divy grad, = div, grady (12.2)
= o(UQ,)ox+2*[o(US, oy +22(a(UQ, )z,
and so on.

¥ e = D tumban®Pn® (123)

is the expansion of the angular distribution in general spherical
harmonics, where a,,,, is the appropriate normalization coefficient:

@y = 4n][[ PEa(@) d0] 7,

lot Vo= 2 nmtanlPunl@) (12)
so that (12.3) can be rewritten
YR =2 > ent [y, (12.5)

From the general properties of spherical harmonics, it follows that for
allm,n Vi[UP, A(R)] = O,
and conversely, any solution of this equation that is proportional to U™

is a spherical harmonic of order n; see Whittaker and Watson (52),
p. 392. Hence, from (12.4),

V3L ¥, =0, (12.6)
‘We now prove the following

Lemma. Any homogeneous polynomial p,(U) of order n in UQ,, UQ,,
and UQ, can be represented uniquely in the form

Po(U) = pA(U)+Upl_o(U)+ Uspt_((U)+..., (12.7)

where p3(U), p&_4(U), etc., are homogeneous polynomials of order n, n—2,
etc., in UQ,, UL, UQ,, satisfying the equation

V3, 5%, (U) = 0. (12.8)
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. Proof. Using Euler’s identity U. gradyp,(U) = ap,(U), it is easily
verified that

2 u: 3 Ut 4
\¢ [Pu(U)'— mvupn(U) + 3 4@ 1)(27"__3)Vup,‘(U)—...] =0,
8o that in (12.7) we may take '
4
PAU) = po(U)— g5 V2, (U)o (12.9)

Dividing [p,(U)—p%(U)] by U? and repeating the process, we find
Pr-2(U), and so on. The representation (12.7) is therefore always
possible,

The number of coefficients in a general homogeneous polynomial of
order m in threo variables is equal to the total number of coefficients
involved in p5(U), p}_,(U), ete., and the relations between the two sets of
coefficients are linear. Thus, by the properties of linear algebraio equa-
tions, the representation (12.7) is unique. This proves the lemma.

The above lemma provides an easy means of expanding a general
homogeneous polynomial of order » in Q,, Q,, Q, (p,(), say) in
spherical harmonics. To do this, we multiply it by U*, apply (12.7) with
the p}(U) found from (12.9), and put U = 1; for Pa-y(S2), a8 we have
seen above, is a spherical harmonic of order n—2j.

12.1.3. The differential equations ,
In view of (12.5), the Boltzmann equation can be written
1[< ¢
[U. grad, 3 (2n+ D)+ [Z (2n+1)\1f,,] = (o), (12.10)
where ¥, is, of course, identical with the neutron flux y,(r). In order to
expand (12.10) in spherical harmonics, it is sufficient to thus expand
each of the quantities [U.grad, ¥,]... |

Using the above lemma and the results
Vi{U.grad, ¥,] = 2divy grad, ¥,,

V4[U.grad, ¥,] = V§[U. grad, ¥, ] = ... = 0,

we easily obtain
s
[U.grad,¥,]y., = [U. grad, ¥, — 7 divy grad,‘?,,] +
U=1

1
+ 2n+1
where the first term on the right is a spherical harmonic of order n+1
and the second is one of order n—1.

[divy grad, ¥, ]y,
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Subestituting into (12.10), collecting spherical harmonics of order =,
and multiplying by U=, we find:

* g 2n+1
dlvu gradr?n-ﬂ"' n;i. ‘Yn'l"

+((2n—1)U.grad, ¥, ,—Udivy, grad, ¥, ] = %s,,,, Po(r), (12.11)
and hence also

divy grad, ¥, .,

- --:—[(2n+1)‘!’,,+(2n—3)U"F,._,+(2n—7)U“I’,,__‘+...]—
—U. grad,[(2n—1)¥, ,+(2n—B) UMY, _s+..]+ li‘_:'_ll' U2 ().

(12.12)

Since ¥, consists in general of 2n4-1 components, equation- (12.11)
gives, for each n, 2n+1 relations between the components of ¥, ,,,
¥,, and ¥, ,. If, however, the number of components of ¥, is less
than 2n4-1 owing to the symmetry of the problem considered, then
(12.11) correspondingly represents fower equations,

The equation (12.12) for a particular n appears to contain more
equations between the components of the ¥,. (n’ < n-1) than the
ocorresponding equation (12.11), However, if (12.12) is satisfied for all
7 < ny, then for n = n, it becomes identical with the corresponding
equation (12.11), and so for n = n, it represents as many equations
between the components of various V', as there are components of ¥,

The equations (12.12) are exact. In the Py approximation, the equa-
tions (12.12) are retained as they stand only for n < N. For n = N
the term divy, grad, ¥y, is omitted, and for n > N the equations are
disregarded.

12.1.4. The method of successive elimination

The system of equations (12.12) is to be reduced to a system involving
only one unknown in each equation. This is done as follows. The last
equation (12.12) (i.e. that for n = N, with ¥y, neglected) gives ¥y in
terms of ¥, forn < N. Operating on this expression with divy grad,,
and eliminating divygrad, ¥y by means of equation (12.12) for
n=N-—1, we obtain an inhomogeneous differential equation for
¥y.1, Whose free term depends on ¥, for n < N—2. Similarly we get

an inhomogeneous equation for ¥y_,, and so on. The result is a set of
equations of the form:

Ina(VOY, = Fy,[V3, U. grad,, U3, Yoo Vrgoeens Po(r)].  (12.13)
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The fact that the operator on ¥', in (12.13) has the form shown can be
proved as follows. If the dependence of the various ¥, on U is taken
into account, each term in (12.13) will be proportional to U*. Since ¥,
is itself proportional to Un, the operator on it cannot involve U. It is also
evident from the process of elimination that the differentiation’ with
respect to position can enter only as U. grad, or as Vi, and the former
is excluded by the argument just given. The fact that the equation for
holE) s of the form ¢ oaie) = 0 (12,19
can also be shown directly, since tho(r) is a scalar quantity and therefore
must remain invariant when the (Cartesian) system of coordinates is
rotated. The equation that contains it alone is therefore also invariant,
and since the only combinations of d/éx, 8/oy, and 9/dz invariant under
rotation are the linear combinations of V2, V4, etc., the equation for Po(r)
must have the form (12.13'), :

The last equation of ( 12.13) is a homogeneous.equation for i (r), and
this can be solved. The three components of ¥, can then be found from
(12.13) for n = 1, and so on. However, since the equations (12.13) are
derived directly from (12.12) only for n = N and n = N—1, while in
other cases differential operators are used, it is necessary to use (12.12)
as further conditions, and to retain only those solutions of (12.13) for
» = 1 which satisfy (12,12) for n == 0, only thoso of (12.13) for n == 2
which satisfy (12.12) for n = 1, and 80 on,

We give below the complete set of equations (12.13) together with the
supplementary conditions (12.12), for the P, P, and Fy approximations.

K, approximation

[V:—- 3(11-.—c)] Yolr) = 0, }

¥y = —§1U. grad, y,(r).
By approximation

(12.14)

[ 1 l—¢ \

1 9—2¢ 9
A9 = - 5 vt grad, ),
1 8 12.15)
_l_’_y,vg]\p, = —=U. grad, ¥,— |

72
¥y = —HU. grad [, + Uny(r)|—pU2w,, /

3506.99 M

—-i[;(u.grad,)=+‘—°“~‘°—’1’—97-'v:]¢o<r>, -
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together with
. 1—
divg grad, ¥, = — £y )
and divy grad, ¥, = —:—;‘I’I—U. grad_ yy(r).
F, approximation

[25v'__(525 —2316)Vi+

+ F(1575—1190c)V'—1155-———-]-/:°(r) =0,

110
AT 11 "*'33
115-4«; 50—8¢
3 551

1 6 Je 12
e '+ 3| Pa= T

s

[( ‘l°+l°v')<v grad,)+

10 7c
(20 amt M

e Vi 7 V4| U rad ),

[p 3lV’]U grad ¥V, +

—-V‘) U=]¢o(r),

1 " — 5___ 2
[Zi uv]\r = “ﬁ[z V]U grad ¥, —

_[1_1 (U. grad (e — 2 v*) Uﬂ]\vl ['é?ﬁ (U.grad,y+

5—2 10l
+( 1~ 231

Is

_ % [IO(U : grad,)=+(

¥, = —#lU. grad,[0F +8U=¥;+ Uty(r)]—

— U~

vz) U?U. grad ]:ﬁo(r)

1 1
[‘—HW]T‘: ._mU .grad, \r,.._[uu grad_ )+

) U2]¢o(r),

U,

XI1I, §1

(12.16)

\ (1217)
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together with (12.18) and

divU gradr IP.B = - ?‘Fg—su . grad, ‘Fl"'" l—Tl-—g Uz'ﬁo(r),
divy grad, ¥, = — %(7‘I’3+3U2‘P'1)— (12.18)

—U. grad [5%,+ U(r)].

12.2. The reduction of the differential equations
12.2.1. The determination of the neutron flux
We now consider the solution of the equations derived in §12.1. We

shall not attempt to solve them completely, but shall reduce them to

simpler equations and relate their solutions to those of the simplor
equations,

As we already know, the equation for the neutron flux ¢,(r) has the
form Juo(VElpo(r) = 0, (12.13")

where the operator fy,(V2) is a polynomial in V2 with constant co-
efficients; see the disoussion following (12.13). On faotorizing this
polynomial, (12.13’) can be rewritten

H(Vﬁ—x%/l’)¢o(r) =0, (12.19)

where the x, are some real or complex constants depending only on ¢
and N, and not on the geometry. For the case of plane symmetry
(ho(r) depending on z only), the solution of (12.19) is

Yo(#) = 3 [Bf exf+ By e,
On comparing this with the result (10.8) obtained for plane symmetry,

we see that the - y, are identical with the --v;in (10.8), and the equation
(12.19) therefore has the form

" |
- T e = o, (12.20)

where the v, are the roots of the determinantal equation (10.7), it being
assumed that &V is odd. Further, it is known (see § 10.2.2) that all the

v, are different (j = 1,2,..., }(N + 1)), and so the most general solution

of (12.20) is HN+1)

o(r) = jgl Po4(r), (12.21)
where ¢, ,(r) satisfies

(V233020 (x) = 0. o (222)
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If ¢ < 1, 8o that all the vj are real and positive, this result can also be
written

dolr) =‘:';\::’ib,(v, r/l), (2219
where every ®,(R) satisfies .
(VA—1)0,R) = 0. (12.22")

The extension of this to the case ¢ > 1 is obvious.

12.2.2. The neutron current and higher moments

The neutron current is found from equation (12.13) with » = 1. Since
the operators U.grad, and V? commute, the contribution to the
particular integral, arising from some term 4(T) =y, r/l)in (12.21°),
will be of the form :

¥,5=0,,U.grad®, (v, r/l), (12.23)

where the gradient is with respect to the variable v, r/l whioh appears in
®,, while g, ; is a numerical coefficient depending only on v; ¢, and N.
Being independent of the geometry, g, can be found from the plane
case, where it equals G,(v;). One can verify that the particular integral,
constructed by adding the contributions obtained in this manner from
all the terms of (12.21°), also satisfies (12.12) for n = 0,

To complete the solution of (12.13) for n = 1 we must add the com-
plementary function. This will clearly have the form

HN=-1)
&, UXdBirfl), ‘ (12.24)
where the B; are as follows:
in the F; approximation, B; = /(7/3);
in the F; approximation, g, and B, are the positive roots of } (12.25)
I-Hﬁ"*'kélﬁ‘ =0,
etc., and the X, are vectors each of whose components satisfies (12.22").
In order to satisfy the appropriate supplementary conditions (12.12),
the three components of each X,(R) must be related by
divX,(R) = 0. (12.26)
Thefactor U is introduced in (12.24) so that X,(R)is independent of U.

Collecting the above results, and expressing the gradient with respect
to the argument of each @, in terms of grad,, we find

N

HN+1) =1)
[¥ilows =102 grad,[" 5 (1) Gu)0,0 ]+ 3. KGR
(12.27)
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Similarly,
HN+1) 1
(¥aloms = PR grad 1= 47 S "5 6,0)00,0)]

=1
~3@- grad) 3" ENX RS "1, (1229)

where the last group of terms is a further complementary funotion, y,
being given by:

in the F, approximation, y, = 7;

in the F; approximation, y, and y, are the positive roots of } (12.29)

I~ it = 0, | '
ote., and U?@,(R) is a quadratic polynomial in vQ,, UQ,, UQ,, whoso
coefficients satisfy (12.22') and are related by .
Vi{U?0,(R)] = divy grad,[U?,(R)] = 0. (12.30)

It is to be noted that the entire particular integral (that is, the terms in
both @, and X,) satisfies (12.12) with n = 1, automatically. In general,
the supplementary equation (12.12) for n = n'—1 restricts only the
complementary function introduced in ¥',,, and not those introduced
already in the lower moments,

The values of ¥, ¥, and 80 on can be found similarly. The results
obtained show, incidentally, that in any finite order of approximation

the angular distribution is always expressed in terms of the solutions
of (12.22").

12.2.3. The complementary functions

The appearance of complementary functions in the solutions of the
equations for ¥, ¥,, etc., shows that in general there can be different
angular distributions of neutrons that have the same flux distribution,
that have the same flux and current distribution, and so on. This is
easily understandable; for instance, let the half-space > 0 be exposed
to ¢(£2)dQ neutrons in the solid angle dQ about Q falling on = = 0 from
outside per unit time per unit area. Let g(S2) = g(u, 6), where n=9Q,
and 6 = tan=1(Q,/Q, ). The neutron flux ,(x) in z > 0 is determined by
the values of the integral

2

[ (e, 6) s
0

as a function of u, and does not depend on the way in which 8 enters
9(, 0); but the lateral components of the current and higher moments
will not have this property.
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Ifthe scattering is isotropic (and this is the only case we have examined
so far), the possible difference between the angular distributions for the
same flux should decrease not slower than exp(—d/l), where d is the
distance from the nearest boundary. This in fact follows from the above
formulae, since the relaxation lengths of the terms appearing in the
complementary functions are I/g,, [y, etc. (see (12.27), (12.28)), and
these are lees than 1, since all the B, y,, etc., are greater than unity.

Therelation (12.26) shows that the number of independent components
of each X, is one lees than the number consistent with the symmetry of
the problem considered. That is, the number of different solutions of
(12.22’) appearing in each X, cannot exceed two, while, if the direction
of the neutron current is given by symmetry (as in the cases of plane
and spherical symmetry), the complementary function disappours
altogether, and the current is then uniquely determined by the flux.

Similarly, the relation (12.30) shows that the number of independent
components of each ©, is the difference between the number of com-
ponents of the second moment consistent with the symmetry of the
problem, and the number of components of the current. That is, the
number of independent components of each ©,(R) cannot exceed two,
while, if the number of components of the second moment is, by sym-
metry, equal to that of the current, the second moment is uniquely
defined by the flux and current. Similar results hold for the higher:
moments.

12.2.4. The boundary conditions

In considering the boundary conditions under which the foregoing
equations are to be solved, we shall restrict ourselves to the two most
frequent types of boundary, namely, an interface between two media
in contact, and a free surface; further, in the latter case we consider
only boundary conditions of Marshak’s type.

We first find the number of conditions that can be satisfied. Let p,
be the largest number of linearly independent spherical harmonic

moments of order n that is compatible with the symmetry of the geometry
considered. We have

1 < Dy < 2n+1 and D, gpn-l-l' (12'31)
On examining the elimination process described in § 12.1.4, we see that
¥y, and ¥y_, satisfy second-order differential equations, ¥'y_, and
¥y fourth-order equations, and 80 on. Thus y,,(r) satisfies an equation
of order N1, and since it is a scalar (i.e. has p, = 1 component), it will
contain p,.3(N 1) solutions of (12.22°). The quantities ¥, and ¥,
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satisfy equations of order N—1. The complementary function intro-
duced in ¥, has p, components, but from § 12.2.3 only p,—1 = p,—p,
of these can be chosen independently. The complementary function
introduced in ¥, has p, components, but again only p,—p, of these can
be chosen independently. Thus the complementary functions introduced
in ¥, and ¥, contain between them only (p,—p,). 3(N—1) independent
solutions of (12.22). Similarly, those introduced in ¥, and ¥, contain
between them only (p;—p,).3(N—3) independent solutions of that
equation, and go on. The total number of solutions of (12.22’) per medium
which are at our disposal is therefore

N+1

po) +(P‘ pa) +"' = Po+Py+ -+ + Py-y1

Every golution of (12.22'), however, corresponds to one condition
satisfied all over the surface of the medium in question. Thus the
number of conditions that can be satisfied is

. Po+Ppet...+Dpy-, ab a free surface, }
2(po+pet...+2y-1) at an interface.

Considering now the boundary conditions themselves, we first take
the case where the symmetry is such that p, = p,, ps = p,, eto., and so
the total number of even-order moments that enter the solution is equal
to the number of odd-order moments:

Dot Pyt Py = Py+Pat 4Dy (12.33)

In this case, the total number of moments entering the solution in each
medium is equal to the number of conditions that can be satisfied at an
interface. However, at an interface between two media in contact, the
exact values of the moments should be continuous. At such an interface,
therefore, provided that (12.33) holds, we are led to the conditions

(12.32)

YnmlT) 18 continuous for all m and each n < N; (12.34)

this is a direct generalization of (10.30).
Similarly, for a free surface, when (12.33) holds, the arguments leading
to (10.63) can be repeated to give the Marshak-type boundary conditions

f J‘ (r, )P, ,(R) dQ = 0 for Q inward, T on the free surface,
all m, and n odd and < N. (12.35)

If (12.33) is not satisfied, (12.34) contains
P1+Pgt e+ Pn— (Pot+Pat .+ DPy-y) (12.36)
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conditions too many, and so does (12.35). We must therefore select
from the ¥ p, conditions (12.34) the 2(po+p3+...+2y_,) most relevant
. ones, and satisfy only these, disregarding the remaining ones; the condi-
. tions (12.35) must be similarly reduced. It might seem simpler, in the

case of (12.35), to replace the odd-order harmonics in the integrand by
even-order harmonics, which makes the number of conditions right;
we have seen, however, in particular cases where (12.33) holds (cf.
§ 10.3.68), that this leads to a deterioration of the convergence, and the
- same will probably be true of the general case,

No detailed investigation has yet been made to find what choice of
conditions from (12.34) leads to the best convergence; most applications
of the spherical harmonics method have been to cases where (12.33) was
satisfied. The following considerations may, however, be noted.

The inequalities (12.31) show that the difference (12.36) can never
exceed py—1. It should therefore always be possible to satisfy the
continuity of ¢, ,(r) at an interface for all m and each n < N—1;
moreover, it seems better, on intuitive grounds, to neglect some of the
continuity conditions on the Nth order moment, and not those on moments
of any lower order. Having satisfied (12.34) for all moments of order not
exceeding N —1, it is still possible to satisfy it for some of order N. These
. are selected as follows. Let 1 be the component of Q normal to the inter-

face, tan @ the ratio of the two tangential components, and

P ml(T) = J’ f $(r, @) PF()[cos mf+-sin mf] dQ, (12.37)

- where PR are the associated Legendre functions. In this notation
$nn(r) and ¢y _n(r) may be described as the ‘entirely tangential’
' moments of order N and ¥in,o(r) 88 the ‘entirely normal’ one, while in
- generalyy . (r) can be described as * predominantly normal’ if || is small
- and as ‘predominantly tangential’ otherwise. It is seen from (12.12)
. that the entirely tangential moments of order & in the P, approximation
" are given by direct differentiation of the lower-order moments with
. respect to tangential coordinates only, If the mean free paths in the two
» media are the same, the continuity of ¢, y(r) and ¥n,~n(r) will therefore
. follow from that of the lower-order moments ; if the mean free paths are
* different, the continuity of y; ~(r) and iy _y(r) is incompatible with that
. of the Jower-order moments. No condition, therefore, can be placed on
- the tangential moments. Further, no symmetry of the system can cause
_ the entirely normal moment to vanish. These suggest that the pre-
. dominantly normal moments should be regarded as more relevant than
the predominantly tangential ones,
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It is therefore possible to give the following boundary conditions for
use at the interface of two media in contact:

¥ m(T) 18 continuous foreachn < N—1andallm belonging to them, and
Jorn = Nand as many m as possible starting from the smallest |m)|.
(12.34')

A similar selection would be made for a free surface from the conditions
(12.35). '

12.3. Cylindrical geometries

12.3.1. The choice of representation

We now illustrate the discussion of §§ 12.1 and 12.2 by applying them
to the case of a finite cylinder, with symmetry about the axis of the
cylinder.t Let the coordinate z be measured along the axis, r perpen-
dioular to it and 0 the azimuthal angle. The vector U = US is speci-

fied in the same manner by its components U, and U, and its azimuthal
angle §'. In this system of coordinates

s 2@ 10 2
U.grad, = U,[cos(o —0) - +sin(0'—~0) %] +02
and divygrad_ — cos(o'—o)[.__a' 1.2 (12.38)
v v 6r6U,+rU,3030' + ’
RN S U TS P R S
tein(® '"0)[7 aU,ao"'ﬁ,arao'] + 5ot

while V2 and V3 have their familiar forms (cf. (12.2)).

With the symmetry postulated above, the angular distribution can
involve § and ¢’ only as their difference, and must be an even function of
that difference. The same must be true also of the quantities ¥, intro-
duced in (12.4). If we expand ‘¥, a8 a Fourier series in §’—6, the series
must terminate because ‘¥, is a homogeneous polynomial of order » in
U,cos¢, U,sin6’ and U, We therefore obtain

Y, = i cosm(8'—0)A,, .(r,z, U, U,), (12.39)
M=o

where 4, ,, is a homogeneous polynomial of order » in U, and U,. This,
together with the equation V¥, = 0 (see (12.6)), determines the
dependence of 4,,,, on U, and U, and it is thus known apart from a factor

1 By this we mean that tho system is invariant with respect to rotation about the
axis and/or reflection in a plane through the axis.
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" which may depend on r and z. Thus, (12.39) can be rewritten

\Fn =m20005 m(o'_ o)B"'m( [Ir’ US)'ﬁn.m(r: z)) (12.40)

where the B, ,, are easily found to be
— JIA—-mrIm m! (n—m)! _l _.U! N 12.41
BanlUn U) = UF~0; q_zo(m-}-q)! (n—m—2gq)1\" 2T,/ ’ (12:41)

- while the ¢, ,, (m = 0,1,...,n) are, apart from a normalization factor,
. the spherical harmonic moments of order =.

12.3.2. The expressions for the moments

Wenow determine the expressions for the spherical harmonic moments
.' defined by(12.40). In the problem under consideration, J)(r, Q) can always
: be expanded as a Fourier series in z and each term of this expansion
" determined separately. That is, it is sufficient to examine the case where
‘ Y(r, ) is a periodic function of z with period 27l/w, say. The simplest
. way to do this is to put

' bnmr2) = o mlr)oxpliesz/l), (12.42)
* and to separate the real and imaginary parts afterwards. We shall also
. assume for simplicity that the central core of the system is being con-
- sidered, so that all solutions should be regular for r = 0.

The flux is obtained as follows. Substituting the expression (12.42) for

- y(r,z) into (12.22), solving the resulting equation for §,(r), and using
. (12.21), we obtain '

4D i
Polr,2) = ;Zx A, I((v}+w?)irl)exp(iwz/l), (12.43)

where the 4, are constants of integration.

- Wenext consider the current. The contribution to the complementary
~ function for each B (given by (12.25)) is determined separately and
denoted by an appropriate suffix. From (12.40), (12.41), and (12.42) we
L BAYe o [T Buaplr)+ Uy cos(8'—O)gy , o) expliwe]i).

* Bubstituting this into the appropriate equation (12.22), it follows that
$105(r) and $,, o(r) satisfy

d2 1d m? 2 2
[&_ﬁ ; E;_F_E_‘l*;_‘f’_]qsl'mﬂ = 0, (12.44)

while (12.26) gives

’_22‘#1.0,5(")'1' (g; + ;)?51,1;5(’) = 0.
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These equations determine ¢, 44(r) and $1,1,8(r), since the solution is
assumed regular at r = 0. The particular solution, corresponding to
(12.43), of the equation for %] is given dircctly by combining tho
formula (12.27) with the expression (12.38) for U. grad, in the present
system of coordinates. The result is

. ${N+1) w W
alra) = ieent] S 4, Gy ) (- )+
§=1

HN=-1

T2 Bi'(ﬁf"*"w“)*lo((ﬁf'-kw*)*rll)]L
(N +1) = . (12.45)
hatri) = et 5 4,600 L 1wty +

=1

‘-L

+“z" Byl (@-+ayr)|

where the B, are further constants of integration, and ¢, , and ¢, , are

defined according to (12.40) and (12.5), that is, so that the complete
angular distribution is given by

P(r, Q) = é{‘/’o(’s 2)+3[Q, iy o7, 2)+Q, cos(8'—O), 4 (r, 2)]+

+ 55— 308 Np,0(r, 2) +,Q, co8(6'— )y 1 (1, 2) +

+Q2 co8 2(0"—O)ig o(r, 2)]+...}.  (12.46)
The second-order moments are determined in the same manner,andsoon.
In the case of a cylinder of infinite length, the system has two further
symmetry properties, in addition to those stated previously: it is in-
variant with respect to reflection in the plane z = 0 and translation
parallel to the z-axis. The current therefore has no component ¢, ,
parallel to the z-axis and, as before, no component round the axis; its
direction is therefore completely prescribed. It follows from the dis-
cussion of § 12.2.3 that the complementary function introduced in ¥,
must vanish. This can also be seen from (12.45) by putting w = 0; if
any B, is not zero, the result is a solution for which y, 4(r, z) does not

vanish, and which therefore does not possess the required symmetry.

12.4. Yvon’s modification of the spherical harmonics method

We finally discuss a possiblo modification of the spherical harmonics
method, suggested by Yvon (unpublished, but quoted by Kourganoff
(27, p. 101)). We shall take the case of plane symmetry and use the
notation of Chapter X,
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Yvon’s suggestion is based on the following considerations. At free
surfaces and interfaces, the angular distribution as a function of the
- direction cosine has a discontinuity at # = 0. For points inside the
~ media, although ¢(z, 1) is continuous, it is given by different analytical
. functions of u for 4 > 0 and u < 0. However, for any z and either
. interval —1 <p <0o0r 0 < pu < 1, y(z, p) will be a regular function
- of u, at least in the open interval, and will be bounded and of bounded
_ variation in the closed interval. These statements, of course, may not
hold in the presence of highly anisotropie sources inside or outside the

* medium,

. The polynomial approximations in an open interval to a function
regular in this interval, and bounded and of bounded variation in the
- corresponding closed interval, will converge much better than the
. polynomial approximations to a discontinuous function. Accordingly,
Yvon has suggested using, instead of the expansion of Y(z, ) in Legendre
polynomials in the interval (—1, 1), two different expansions: for u > 0
in terms of F,(2p—1), and for u < 0 in terms of B, (2u+1).
' The general outline of the solution by this method (corresponding to
§ 10.1) is easily obtained, but the more detailed analysis (corresponding
to §§ 10.2 to 10.6) has not yet been carried out.
~ The usefulness of Yvon’s method may be estimated as follows.
. Though the exact y(z, ) is given, for any z, by two different functions
for p > 0 and p < 0, the difference between them becomes negligible at
" distances z from the boundaries which are large compared with the mean
. free path, and there is therefore a single analytical function, regular in
+ (=1, 1), whose difference from y(z, ) is negligibly small for the given z.
A function regular in (—1, 1), however, can certainly be more accurately
~ approximated by one polynomial of order N in the whole interval than
- by a polynomial of order §(N —1) in each half of the interval. Thus, while
© Yvon’s procedure should converge better near the interfaces than the
. usual method of spherical harmonics, the reverse is the case in the
- interior of the media. Whether the new method is profitable depends,
. therefore, on the aspect of the problem that is of interest. In some
" applications, for instance in astrophysics (where the emergent angular
. distribution is of interest, the equations of radiative transfer being the
* same as those of neutron transport), the values of Yz, 1) at the free
. surface are required, and the rate of convergence of the solution inside
- the medium is unimportant. In this case, Yvon’s procedure will give
. good results. In neutron transport problems, however, it is usually the
. critical size (see § 1.4) which is required, and this will be governed
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primarily by the conditions in the interior of the medium. In this ocase,
therefore, the advantage of Yvon’s procedure is lost.

Note added in proof. An account of Yvon’s procedure has recently
been published by Mertens (Simon Stevin, Supplement, 30, 1954), who
has also indicated how this procedure can be generalized to the case
of anisotropio scattering. Mertens does not extend the method to
geometries other than plane, however.

Note added in second impression. For the case of cylindrical symmetry,
we have given in§ 12.3.2 the explicit expressions for , o(r, z) and , 4(r, 2).
In a recent paper (B. Davison, Canadian J. Phys. 35, 576, 1957) the
explicit expression for y, ,(r) for arbitrary n, m, and N has been derived
for the particular case w = 0. In the same paper the method of dealing
with multi-layer problems described, for the case of plane symmetry, in
§ 10.4 is extended to the case of cylindrical symmetry.

We have given in § 12.2.2 semi-explicit expressions for ¥, and ¥, for a
general geometry. The corresponding expression for Y,, with n arbitrary,
has also been derived recently (B. Davison, ‘Spherical harmonics method
for neutron-transport problems with incomplete symmetry’, Canadian
J. Phys. 36, 1958). This latter paper considers also problems where the
distribution of materials possesses spherical or cylindrical symmetry,
but the distribution of sources and/or the conditions at infinity do not.



XIII
THE METHOD OF DISCRETE ORDINATES

13.1. General outline of the method

Havine expounded the method of spherical harmonics, we now discuss
other methods for the approximate solution of neutron transport prob-
lems. The first of these is Chandrasekhar’s method of discrete ordinates.t
This is not so powerful as the spherical harmonics method, which it
resembles in some respects, and it has been developed so far only for
the case of plane geometry.} A detailed exposition of the method is to
be found in Chandrasekhar’s book (9), and we therefore give only an
outline of the method, together with some comments.

The method of discrete ordinates, like the spherical harmonics method,
starts from the Boltzmann equation, which, in the case of the constant
cross-gection approximation, isotropic scattering, and no sources, in a
system with plane symmetry, has the form

3'#(;:#) '/’(-"':P)____ f o, ') da. (10.'1)

Instead of converting (10.1) into a system of equations in the moments
of the angular distribution, however, we immediately approximate the
integral on the right by a formula of numerical integration, of the type:

! N
J76 = 3 08, (13.1)

where the a,; and u, are given by the integration formula used, and do
not depend on the integrand.

The equation (10.1) need then be solved only for u equal to each of
the p,; that is, it is replaced by the system of differential equations

e N(;F¢)+¢(x ) le @z, 1) (B =1,2,..,N). (13.2)

The quantities yi(z, u,) can be regarded as N functions of tho variable z.
The solution of (13.2) is clearly of the form

P, ) = ; Aa,iexp(')'cz/l)' ’ (13.3)
t First suggested by Wick (53), but the detailed development of the method is due to
Chandrasekhar.

1 The question of its extension to other geometries is dealt with in § 13.7.2.
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The permissible values of y, are found by substituting a particular
term of (13.3) into (13.2). This gives

N
A= 18.4
4 2(1+my,),zla’ (134

and this shows also that 4,, defined by

N
4,=50,4,, (13.5)

cannot vanish unless every A,; vanishes. Multiplying (13.4) by a,,
summing over 4, and dividing by 4,, we have

c ¥ a
== i, 13.6
21_21 L4457, { )

and this defines the permissible values of y,. The equation (13.3) can now
be written more explicitly

(e, ) = 221 T exply,al). (13.7)

13.2. The roots of the characteristic equation

It is seen at once that, if the order of approximation increases in-
definitely, the equation (13.6) defining the permissible values of y,
becomes

= -—lo,

1
¢ f dp c 1+Yn
A Itpy, 2y, 1—y,

This implies, according to (5.5), that there are two solutions of (13.6),
say y, and y_,, which tend to --1/L as the order of approximation in-

creases: lim y,y = /L. (13.8)

In order easily to derive further information from (13.6), we shall make
the following assumptions about the summation formula (13.1):

(i) it is symmetrical about the midpoint of the interval, i.e.

Ky = —Uys1-p O = Gyi-g; (13.9)

(ii) it gives the exact value of the integral if the integrand is a

polynomial of sufficiently low order, not exceeding Z(N), say ; thisimplies
that, if » is a positive integer,

.’ilaﬂ‘f" _ {2/(n+1) for even n << Z(N),

0 for odd n; (13.10)
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(iii) if the integrand is positive in (—1,1), the integral as given by
(13.1) is also positive; this implies that
a; > 0; (13.11)
(iv) all the u, are distinct.
(The above four properties are possessed by most commonly-used
summation formulae.)

(v) only approximations with an even number of y, are used (N is
even); this implies, from (i) and (iv), that

N0 py; vanishes, (13.12)

This condition (N even) may seem at first sight to be the opposite of the

condition of odd N used in the spherical harmonics method, but we have

seen that in the latter case the number of equations to be solved is even,
and it is in this last respect that similarity should be expected.

According to (13.9), the right side of (13.8) 15 unaltered if y, is feplaced
by —v,; if one of these is a solution, the other is therefore a solution also.
If the roots are suitably numbered, this can be expressed as

Y-t = —Ys (13.13)
The equation (13.6) can, in fact, be put in the more convenient form
N
l1=c 2 (13.6)
J=15iv K Y.

by combining the jth and (¥ +1—j5)th terms.

Using (18.11), it can be shown, with the same argument as was given
to derive (10.21), that just one root of (13.6) lies between any two
consecutive 1/u, of the same sign. This gives N—2 roots, and since all
liey| are less than unity, each of these roots must have a modulus greater
than unity. If ¢ < 1, it can be shown similarly that there are two more
roots, one between zero and the smallest positive 1/u,, and the other
between the largest negative 1 [11; and zero. For ¢ = 1, these two roots
become a double root at the origin, while for ¢ > 1 they become two
purely imaginary roots. These two roots are clearly identical with the
¥+1 Which appear in (13.8). The other roots, lying between consecutive
1/p; of the same sign, can be called V180 Y19 ©tC., and then

[74sl > 1 fors> 2. . (13.14)

The formulae (13.8) and (13.14) are closely similar to the formulae
(10.27) and (10.28). This shows that the distribution of the exponents
7, in the method of discrete ordinates is essentially the same as that of
the v; in the spherical harmonics method. As before, the term in (13.7)
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corresponding to y,, can be identified as the asymplotic part, and the
remaining terms as the transient part. If ¢ = 1, the asymptotio part
becomes A+ Blafl—p,). (13.15)

The solution of (13.2) which we have obtained is the most general one,
since we have found just N roots of (13.8).

13.3. The boundary conditions. Elimination

It is evident that the boundary conditions determining the constants
4, in (13.7) and the constants 4 and B in (13.15) are:

(i) at an interface of two media in contact,

Y(x, py) is continuous for j = 1, 2,.,N; (13.16)
(i) at & free surface (say x = 0 with the medium in z > 0),
$(0, uy) = 0 for all positive #; considered. (13.17)

The extension of (13.17) to the case of an exposed surface is also clear,
provided that the method of discrete ordinates is still applicable. We shall
discuss in §§ 13.6 and 13.7 the question of applicability.

If a purely absorbing layer is placed between two other media, it should
be treated like any other medium. The values of v, for ¢ = 0 (pure
absorption) are equal to the —1/p; (see (13.6)).

If a medium extends from z = Zy to x = +4-00, and there is no
supply of neutrons from z = 0o, then (13.7) for 2 > z, will contain
only negative y,. Applying this to z = %;, denoting the values of y,

for the medium in 2, < z < 00 by ¥, and reducing to a common
denominator, we have

polynomial of order }N—1 in g,
H (4py 7:,0)
Yo s <0

Ife=1for x>z, y,,= ¥-10 = 0, but (13.18), and (13.18’) below,
are unchanged, as may be seen by proceeding to the limit ¢ — 1,

The condition (13.18) is clearly equivalent to imposing the correct
boundary conditions at = o, and, if the distribution in 2 > z, is
unimportant, that region need be considered no further. If there is a
supply of neutrons from z = -0, (13.18) becomes

'/’(xo: I"'i) =

. (13.18)

polynomial of order }N in g,
(A +£71,0) 7110 (1 +44¥5,0)

where y, , is the smallest non-negative Va0

If the entire system consists of a homogeneous half-space z > 0
3506 .98 N

lﬁ(xo, Be) =

(13.18')
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with a free surface at = = 0, then on combining (13.18') and (13.17)
we have

(0, pm) = A TT (mi—p) |/ Uuey) TT (Upeys),  (13.19)
>0 Y:<0

where A is a normalization constant, and the suffix 0 is now omitted, as
there is only one medium and one set of y,.

The expression (13.19) contains no arbitrary constant other than A4,
and the shape of the angular distribution emerging from a half-space is
therefore given directly in this approximation by (13.19). In the caso of
isotropic scattering, this distribution is known exactly in the form of a
fairly simple integral (see (6.17) and (6.9)), and the result (13.19) is
therefore not very important; its extension to the case of anisotropic
scattering (Chapter XVII) is, however, of interest.

The simplification afforded by formulae (13.18), (13.18’), and (13.19)
may be regarded as a counterpart of the procedure described in §10.4
in connexion with the spherical harmonics method. It may be men-
tioned that a slight modification of that procedure could likewise be
utilized to eliminate the outermost medium (if that medium extends to
infinity), although in the spherical harmonics method the elimination
of the intermediate media is more advantageous.

13.4. The evaluation of the spherical harmonic moments

In the method of discrete ordinates, the definite integrals in the
spherical harmonic moments

1
¥al2) = [[d@wP (W dQ = 2 [ (o wBG)dp  (103)
~1

are evaluated by the approximate formula (13.1), that is, they are
defined by

Tale) = 21 3. 0,4, Py (13.20)

Multiplying (13.2) by a, P, (1), summing over i, and using the recurrence
relation between the Legendre polynomials, we obtain

(n+ 1)“*2;:(”)+nd¢'k-;(’”)+[2n+1—cso,,]‘zﬂl(x) =0. (13.21)

The quantities ,(x), defined by (13.20) with ¢(, ;) the solutions of
(13.2), therefore satisfy the same system of equations as the exact
spherical harmonic moments (see (10.4)). (They do not, however, satisfy
the undistorted system (10.4), since they do not satisfy the condition
that zo(2n+1)-ﬁn(x)Pn(p) converges.)

e
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In particular, for ¢ = 1, the first of (13.21) gives

[,(2)],., = constant. (13.22)

In the derivation of (13.21) and (13.22), no use is made of the assump-
tion (13.10) regarding the summation formula (13.1). Chandrasekhar,

however, derives (13.21) and (13.22) from (13.10) and (13.6) by means of
a lengthy process.

13.5. The solution for general p. The iterated angular distribu-
tion
We now determine yi(z, u) for values of p in the interval (—1,1) which
are not among the u; involved in (18.1). It might be thought that the
formula (13.7) would be applicable for any such x. We have seen in
§ 13.2, however, that each y, (oxcopt Y1) lies between two adjacent
values of 4-1/uy; tho py all lie in (—1, 1), and therefore each (L4-py)t

for |s| > 2 has a pole in (—1,1). Since y(z, u) can have no poles in this
interval, the expression

c 4,
3 Z 1+Py’exp(y,x/l) (13.23)

cannot be an acceptable approximation to y(z, u) in the whole interval.

This difficulty is most consistently overcome as follows. We use
(13.7) and (13.20) to determine yj4(x), and replace o(x) on the right of
(10.1) by this () ; the resulting equation for y(x, u) is then solved under
the exact boundary conditions. Using (13.6), we see that Po(z) defined as

VOB fe) = 2m 3 4, exply,a) (13.24)
and therefore the solution of (10.1) in this approximation is

’ _ _ c A,

(2, 1) = Flpexp( x/yl)+-2-2 T oo exptnell),  (13.26)
where F(u) is determined by the boundary conditions.

Since, in solving (13.2), the boundary conditions are satisfied for
= each p,, F(u) should vanish for u = each pu,, in order that (13.25)
should then reduce to (13.7). For u-> —1/y,, the boundary conditions
give ¢c 4

: Flp) = —_ =22 _T140(1 ,
() = =5 e 1+ 00 +pey)]
in order that the infinite parts of the poles of F(p)exp(—a/ul) should
cancel those of (13.23), making the resulting expression (13.25) every-
where finite.

Since (13.25) was derived by substituting a preliminary approximation
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(13.24) into the Boltzmann equation and solving it again, (13.25) may
be regarded as an iterated angular distribution. In Chapter XVI we shall
give a general discussion of the use of iterative processes in neutron trans-
port theory.

In the spherical harmonics method it is also possible to take the
expression for yig(z) and substitute it into (10.1), integrating the resulting
equation and so obtaining the iterated angular distribution in a form
similar to (13.25). However, whereas this procedure is compulsory in
the method of discrete ordinates in order to find y(x, u) for all &, in the
spherical harmonics method this is optional, and the simpler formula
(10.2) is often adequate. '

13.6. The choice of the summation formula

Hitherto we have specified the general conditions (i)-(v) (§ 13.2) on
the summation formula used, but we have hot discussed it more closely.
This we now do. Chandrasekhar himself used the Gauss formula, on
the grounds that, when the integrand is regular in the (closed) interval
of integration, this formula gives the most accurate result for a given
number of points x,. However, we have seen in § 12.4 that y(z, u) is

‘not in general regular in the closed interval (—1, 1). The chief advantage
of Gauss’s formula is therefore lost, and other writers have suggested
alternative formulae.

Sykes (45) has proposed the application of Gauss’s formula to each of
the intervals (—1,0) and (0, 1) separately.t An argument similar to that
of § 12.4, with the same restrictions (absence of exposed surfaces, eto.),
shows that Sykes’s formula (which he calls the double-Gauss)is preferable
in the determination of the emergent angular distribution, while the
Gauss formula should be more reliable for the determination of the
critical size. .

If the emergent angular distribution is required in the case of a strongly
anisotropic irradiation of the free surface, so that the assumptions of
§ 12.4 are not valid, then there is no reason to prefer either the Gauss or
the double-Gauss formula. The question of the best summation formula
in these conditions has been examined by Biickner (7, pp. 111 ff.), and
he advocates the use of equal-interval formulae. He also remarks that,
if the mth derivative of the integrand is discontinuous, there is no advan-

tage in using a formula which is exact for polynomials of order higher
than m—1,

t This method is in fact equivalent to that of Yvon (§ 12.4), at least for the case of
isotropio soattering (8ykes, unpublished).
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13.7. Comparison of the spherical harmonics and discrete
ordinates methods

13.7.1 Plane geometries .

We shall now attempt to assess the merits of these two methods from
the point of view of practical caloulations. It is evident that the formal
analysis, such as the derivation of the properties of the roots of the
characteristic equation, is much simpler in the discrete ordinates
method; this, however, is irrelevant to its convenience in practice and to
its rapidity of convergence.

The close parallelism of the methods shows that for plane geometries
there is not likely to be much difference in their convenience of applioa-
tion, though this may not be the casein certain particular problems. The
available results of theory and practice show that this is true also of the
relative rate of convergence and the accuracy of low-order approxima-
tions, and that the important choice is not between the spherical har-
monics method and the discrete ordinates method, but between the
single-interval treatment (the conventional forms of the two methods)
and the double-interval treatment (Yvon’s modification and the double-
Gauss formula). We have seen that the decision between these must
rest on the quantity of prime interest in the caleulation; the former
is more suitable for critical-size calculations, the latter for finding the
emergent distribution.

13.7.2. Other geometries

The great disadvantage of the method of discrete ordinates is the diffi-
culty of extending it to other geometries. For instance, in a spherically
symmetric system, the Boltzmann equation has the form

1
#3¢(a";#)+l—rpﬁ 8:/:;2#)_,_'/1(’2#) —_ 221 1. lﬁ(f,p.’) dy.’. (11.4)

Since numerical differentiation is rather inacourate even for continuous
functions, it is not possible to take ¢(r, x) for certain 45 88 the set of
unknown functions. If, on the other hand, we take &(r, p)/ep for certain
p488 the set of unknown functions, and determine yi(r, pg)and f Yir,u')dy'
by numerical integration, then for large r/l the basic functions will enter
the equations with very small coefficients, and this is unlikely to give
high accuracy. Further, ¢(r, u;) will have to be calculated by means of
formulae for integrals with variable limits, and these are less accurate
than those with fixed limits.
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Although it may not be correct to say that the discrete ordinates
method cannot be extended beyond the plane case, it seems very unlikely
that any such extension can be superior to the spherical harmonics
method. Chandrasekhar (9, p. 364) has, in fact, suggested an adaptation
of his method for dealing with spherical systems, but he admits that this
adaptation is wholly equivalent to the spherical harmonics method. We
therefore need not discuss Chandrasekhar’s adaptation.
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THE PERTURBATION METHOD

14.1, First-order perturbations in critical-size problems

WE now consider some methods of solving the transport equation which
have a relatively narrow range of application, though in this range they
may be extremely useful. The first of these is the perturbation method:
it is concerned with the effects of small changes in the system. In other
words, in applying this method two systems are considered, a simple
unperturbed system for which the solution may be found by othermethods,
and the actual perturbed system, which differs from the former one only
by a slight alteration of the conditions, or by an alteration of the condi-
tions only in a small volume. We shall discuss the perturbation method
only in relation to the eritical-size problem; its extension to other
problems is not difficult.

It is more convenient, in using the perturbation method, to start from
the integral equation of transport, which in the constant cross-section
approximation with isotropic scattering takes the form (4.15°). Omitting
the source term (since we are considering a critical-size problem) and
introducing a variable parameter as in (3.1), we can rewrite (4.15) as

C(l‘) e av’
p(r) = 4,,[_” Ir) p(r')e-m )Ir—__r’_li' (14.1)

where ~(r, r’) is the optical distance between r and r’ (see (2.39)). If the
system is critical, the lowest eigenvalue y, must be unity (see§ 3.1). The
problem is usually stated in the following terms: if a prescribed small
change is made in some part of an initially critical system, what change
of a prescribed type will make the system again critical ?

For instance, a piece of absorbing material may be introduced into a
system; it is required to find the change in the core radius noeded to keep
the system critical. In a system in which only one of these changes is
made, the lowest eigenvalue is no longer unity, but 14-8, y,, say, while
if only the other change is made, the lowest eigenvalue is 14347, say.
The condition that both together leave the system critical is then

3170 +8270 = 0.
1t is assumed that the alterations in the system are so small that the
effect of each is independent of the presence or absence of the other. It
is therefore possible to neglect the stipulation of criticality and the
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lowest eigenvalue being unity, and simply to demand that the changes

in this eigenvalue produced by the two changes in the system are equal
and opposite.
14.2. The variation

The method just described is most easily applied by varying the equa-
tion (14.1). We first recall some properties of this equation, which were
discussed in § 4.7. Since in (14.1) ¢(r) was not divided as in (3.22), but
was multiplied throughout by the variable parameter ¥, the adjoint
integral equation (4. 28) is now gimply

¥ «fr) . dV
pl(r) = w0 f f f pH(r)e—n n = (14.2)
while (4.29) reduces to

pl(r) = c(!‘)P(l‘)/l(l') - (14.3)
Varying (14.1) ,we have

_ % Ar’) ey GV
3p(r) _EjffT(r—’)p(r Je=¢ r’)lTr_’[ﬁ-
Y ¢:(1')8 ey OV’
+& [ e F—rp T

mfff (r')s [;gr) mn]lr_‘f_[’r_'_li. (14.4)

When this equation is multiplied by p*(r) and integrated over all r, (14. 2)
shows that the second term on the ri ght is equal to the left side. Simpli-
fying the first term on the right by (14.1), we then obtain

it [[[powrarar
-—=[[[ P [ [[ o2 IR * e =] a)

or, using (14.3),

i e
L[]0 [ aenon ey

le—r|

+& [[[owigar [[f o >i§:3,:": 7 [ ol

(14.6)
where r’ = r+s(r’'—r)/lr'—r|. (14.7)
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14.3. The transformation of the integrals
The first integral on the right of (14.8) is easily simplified. By inter-
changing r and r’ and the order of integration and using (14.1), it equals

= [[] P8l av. (14.8)

The second term on the right of (14.6) is transformed as follows.
Instead of specifying the Positions of three oollinear points r, r*, and r’
by the six coordinates of r and r’ and the distance between r and r”, wo
can do 8o by the three coordinates of r’, the direction of r*—r, and the

distances of r and r’ from r*. In Cartesian coordinates, this amounts to
the following change of variables:

x=z"tsu ¥ = x"—gpu
Y =y"+sJ(1—pudoosd y = ¥"—&'\(1—pu*)cos 8
2 =2"48,/(1—pu)sin 6 2’ = 2"—¢\/(1—pu?)sin §

where 1. and 6 are the angular coordinates of the direction of r*—r. The
Jacobian of this transformation is

D(z,y,2,8,2%,y', z’)
D(z*, y,z",s, &, ] )

=+|100 B 0 s 0
010 J(1—putoosd 0 %-—;(’{‘_""’;f —(s8in6)y(1—p?)
001 J(1—ptsing 0 '7'('1#__-'35,_;’ (20080)/(1—pu3)
000 1 0 0 0
100 0 - = 0
010 0 —J(1—pt)o0s 8 %‘l::‘t—f) (#sin 0)/(1—pu)
001 0 —J(1—p%)sing J—Z‘li_i‘% ~ (87008 8),/(1 —pu1)
= (8-}4&’')3, |
Since s+¢' = |[r—r’| and dpdf is the solid angle element dQ, we thus
have dVaV'ds = |r—r' P dV*dQdsds’. (14.9)

Although (14.9) has been derived using Cartesian coordinates, it is, of
course, valid for any system of coordinates,
Since r” lies between r and r’ on the line joining them,

r, 1) = 7(r, ")+ 7(r", '),
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- and hence, using (14.9), we can rewrito the second torm in (14.6) as

Il [ 0 [ e

Fo(r'—oQ)

. ) =7 o)’

(r &' Q)e~1r-R) 4o’ (14.10)
The upper limits of integranon over & and &' are put infinite, since ¢(r)
and ¢(r’) vanish outside the system.

The integrals over s and s’ can easily be expressed in terms of the
. angular distribution y(r”, ). Since the unperturbed system is assumed
critical, the unperturbed value of y is unity, and so the unperturbed
equation (14.1) coincides with (4.15°), and the angular distribution
is then given by (4.16"). Using (4.16’), we can identify the integrals over
- sand & in (14.10) a8 4mj(r”, —Q) and 4m(r", Q) respectively. Sub-
" stituting this into (14.10), calling r” now r and combining the result
~ with (14.6) and (14.8), we find, since y = 1,

o[ rergger =~ [ werss]ars

. f” S[i(:_—)]dl’ff (T, Q(r, —R) dQ.  (14.11)

This gives the perturbation in the lowest eigenvalue when the system is
* initially critical.

It was only in the use of (4.18’) that the above derivation made use of
the assumption that the unperturbed system was critical and that the
lowest eigenvalue was concerned. If a higher eigenvalue is considered,
. it is necessary to state the manner of introduction of this eigenvalue
before the angular distribution can be found. This may be done asfollows:
we consider a fictitious medium for which the number of secondaries per
collision at r is not ¢(r), but ye(r). (Alternatively, we may introduce a
source strength per unit volume s(r) = (y—1)p'(r), but this clearly
. gives the same y(r, ) as for a source-free medium with yc(r) secondaries
per collision.) If this is done, then ¢(r) in (4.16’) is replaced by yc(r).
’ Using this modified angular distribution and proceeding as before, we

874 [[JamBar=—[[] P50 av +
+dm f f J' S[Tr)] av f f bi(r, Q(r, —R) dQ,  (14.11%)
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whero the suflix 4 distinguishes the ecigonvalue and eigenfunction
concerned.

If we introduce for each eigenvalue y, of (14.1) an auxiliary function
74(r), defined by

4n J.J‘ ‘ﬁ{(r’ 9)¢'t(r» —ﬂ) aQ
) ’
then, putting «(r) = 1/(r), B(r) = ¢(r)/l(r), (14.11") becomes

Sydve = — [[ [ sHNBB(E)—giale)] @V [ [[[ phir)BEIAV.
_ (14.13)

gy(r) = (14.12)

14.4. The statistical weight theorem and its form in the diffusion
approximation

The result derived in § 14.3 is called the statistical weight theorem. It
can be expressed by saying that, in estimating the effects of small
changes in a system, the change in the number of secondaries per unit path
has a weight factor proportional to the square of the unperturbed flux,
while the change in the inverse mean free path has a weight factor propor-
tional to the square of the flux multiplied by the value of the auxiliary
function g,(r) at the point where the change is made. The result applies
toanyeffects, and not merely to the changes produced in the eigenvalues,
since any total effect of a small change is proportional to the change
which occurs in the eigenvalue. If this effect is & compensatory change
such that the system remains critical, we have seen in § 14.1 that the
magnitude of the change is proportional to 8y. If there is no compensa-
tion and the system becomes non-critical, so that the stationary solution
is replaced by a time-dependent one, then the time constant of the
latter is proportional to the change in o« throughout the system
necessary to restore criticality, and this latter change is again propor-
tional to &y. _

A simple physical explanation of the appearance of the square of the
unperturbed flux as a weight factor, and of the factor g,(r) before 8a(r),
is given in § 14.6. It may also be remarked that g,(r) vanishes at the
free surface of a system, since for all & either y,(r, Q) or J,(r, —Q)
vanishes there. This we should expect, since alterations of the mean free
path at the free surface, while the number of secondaries per unit path
is unaltered, will have no noticeable effect on the neutron distribution.

If the unperturbed system and the unperturbed eigenfunction have
spherical symmetry, so that yi,(r, ) depends only on r and p (defined
in§ 11.1), then by expanding y,(r, ) in spherical harmonics, substituting
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in (14.12), and using the orthogonality properties of Legendre poly-
nomials, we find

0= o)

" where p,(r) = Yo4(r) and ji(r) = ¥1,4(r), and thus (14.11’) can be written
’ er) . pi(r)
[ [[roriBar = — | [[ 58 sty av—

- f | f {Lraclr)—14) -+ 353r) — B )P+ . B[LU)] V. (14.14)

. We shall estimate the relative magnitudes of the terms in the braces
 in (14.14), assuming that we are concerned with the lowest eigenvalue of

- & critical system (y, == 1), and that the region where the mean free path
has been altered is in the interior of a medium where ¢ e 1. In this
~ oase it is possible to neglect the transient terms in the estimation of
Yolr) = p(r), Py(r) = j(r), Yi(r), eto., and to consider only the asymptotio
parts, in the sense of Chapter V. It follows from the discussion of the
functions @,(v) in Chapter X that the asymptotio part of ,(r) is, for
. small (y;c—1), of the order of (y;c—1)in compared with the mean value
of Yy(r). Thus the first two terms in the braces in (14.14) are of the
order of c—1 compared with the average value of p2(r), the third of the
order of (c—1)3, the fourth of the order of (¢—1)3, and so on. Under
these conditions, therefore, it is clearly safe to neglect all terms in the
- braces other than the first two, and the second term on the right of
~ (14.14) becomes

- J' J’ f {{etr)—1)o%(r)+-32(r)}3[1/Kr)] V.

The first term in this expression can, of course, be recombined with the
term in 3¢(r).

' This argument, though carried out for spherical systems for the sake

. of simplicity, can be extended to any geometry. Thus, if ¥¢ = 1 and the

- changes in the mean free path occur inside a region where ¢ ~ 1, the
* formula (14.11) becomes

o f[[ oo

~— f f f p’(t)b‘[(ill:():Tl] av—3 f f f |j(r)]’8[%r)] av. (14.15)

The quantity [¢(r)—1]/i(r) = B(r)—a(r) is conventionally called the
. capturing properties of the medium, and 1/i(r) = a(r) the scaitering
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properties. With this terminology, the first term in (14.15) is called the
perturbation due to the change in the capturing properties, and the
second term the perturbation due to the change in the scattering
properties,

Alternatively, the simplified form (14.15) of the statistical weight
theorem can be derived from the differential equation (5.4) of the
diffusion approximation, using the perturbation technique. This is to
be expected, since (14.11) has been reduced to (14.15) on the basis of the
assumptions of the diffusion approximation. Thus (14.15) can be
regarded as the statistical weight theorem in the diffusion approximation.

14.5. Applications of the statistical weight theorem

In most applications of the statistical weight theorem, the weight
factors p%(r) and g(r)p%r) are known, and the theorem is used to find 8y.
In some cases, however, the weight factors are found from a knowledge
of the perturbation in the eigenvalue. We give two instances of this.

Firstly, let it be required to determine the ratio of the surface flux to
the mean flux in a homogeneous sphere of critical size. As we have seen,
the diffusion approximation and the Serber-Wilson method are not
accurate at the free surface, and even the spherical harmonics method
may need a fairly high approximation to give an acourate value of the
surface flux. The critical radius, however, can be accurately determined
by any of these methods, or by the variational method (Chapter XV).
We might therefore expect to be able to find the derivative d{afl)/dc
(where a is the critical radius) more accurately than p(a). In this case, it
seems plausible to find p(a) by expressing it in terms of this derivative.
To do this, we apply a small change in the radius and a compensating
change in the value of c. If the system remains critical, 8y = 0, and the
left side of (14.11) vanishes. The second term on the right also vanishes:
the contribution from the change in radius vanishes because

[f pix. @)(r, —2) da

vanishes at the surface, and no change has been made in ! inside the
medium. Thus (14.11) here reduces to.

mg%p’(a)&l-—%—q f f f p’(r)- av = o,

and hence pia) = —a_zl,-’-l d—(% f 13%(r) dr,
0

where all the quantities on the right can be accurately determined by
comparatively simple methods,
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Secondly (and this is perhaps a more interesting example), let there be
. & critical reactive core large compared with the mean free path in it, so
. that ¢ g¢ 1, and arranged so that

(i) & variable amount of material can be removed from a point r;
. and replaced by other material (which we call X) having the same [ and
a rather larger c;

(ii) & variable amount of material can be removed from a point r,
- which is in the core and several mean free paths from the boundary,

and, if desired, replaced by other material (which we call Y) having the
" same ! and a rather smaller c; alternatively, a cavity muy be left at ry
if desired.

We also suppose that these are the only ways in which the system can
be altered, deliberately or otherwise. In this case, oquation (14.15) is
applicable to any alteration in the system. Thus, if a cavity is made at
. ryand enough X inserted at r, to make the system critical again (so that
3y = 0) then (14.15) gives a linear relation between p(r,), p3(ry) and
li(rg)[®. If, on the other hand, the material at r, is replaced byY,and X
is again placed at r, to restore criticality, we similarly obtain the ratio
of p¥(r;) to p¥(r,). By elimination, we find the ratio of [j(r,)|? to p*(r,).
' This shows that in some circumstances not only the density and flux
" but also the current can be measured experimentally, though of course
the actual experimental details are more complicated than would appear
from the above description.

" 14.6. The perturbation in the neutron flux

We have so far considered only the perturbation in the eigenvalues
ys0f (14.1). However, it is sometimes of interest to find the corresponding
perturbations in the eigenfunctions, i.e. the changes in the space distribu-
tion of the neutron flux, resulting from alterations in the system. For
simplicity, we discuss in detail only the case where the changes concerned
are in B(r) = ¢(r)/l(r), while a(r) = 1/I(r) remains unaltered, and shall
indicate the method of extending the results to problems where the mean
free path also is perturbed. .

If py(r) is the unperturbed flux, then increasing A(r) by 88(r) is
equivalent to introducing a system of sources of strength

8(r) = po(r)3B(r)/4m (14.16)
~ per unit volume per unit solid angle. The effects of sources in the general

- case (i.e. without the constant cross-section approximation) have been
' discussed in §§ 3.4 to 3.6. We shall specialize these results to the case of
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igotropic scattering and constant oross-sections more explicitly than
in Chapter IV,

We assume that the various eigenfunctions p,(r) of (14.1) form a com-
plete set, normalized so that

f f f Ar)e(r)/Ur)} dV = 1. (14.17)

It follows from (3.20"), or by applying to (14.1) and (14.2) the argument
which led to (3.20), that p(r) and pj(r) form a biorthogonal set. Using
(14.3) and (14.17), this can be oxpressed as

[[] ederosmyeteye)) av = s, (14.18)

Since the set p}(r) is assumed complete, the source strength in (4.16') can
be representod as

=3 {’j’%}mm [[[ siteryav (14.10)

Substituting this into (4.15%), the latter equation can be rewritten
p(r)

1 ’ I 7 ” L (.4 dV'
=]/ o [p(r >+4pr¢(r ) [ [ [ stwmienav ]e-ﬂmlr_r,,,,
and, from (14.1), the solution is clearly

plr) =4 > [[[ sty av’ , . (14.20)
T vi—1

Substituting here for s(r) from (14.18), we find, since p(r) is here simply

the perturbation in the lowest eigenfunction p(r),

bate) = 3 [ WAAN Y ) (14
i Yi—

Since the unperturbed system is assumed critical, the lowest eigenvalue
¥o 18 unity, and for (14.21) to give a finite result we must have

i [[ s3@ele)ie)) av = o. (14.22)
This is, of course, what we should get from (14.11) by putting
8[1/U(r)] = &y = 0. '

The derivation of (14.22) by means of (14.20) gives a simple physical
explanation of why the statistical weight of 38(r) is the square of the
unperturbed neutron flux : one factor p(r) arises because the effect of the
source at r is proportional to py(r), by (14.20), and the other because a
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instance, if p(r) and p'(r) are the solutions of the two perturbed equations
(14.1) and (14.2), and py(r) and p}(r) are those of the corresponding
unperturbed equations, it is better to consider the expression for

[[] wptm—rt©poten a¥
rather than that for

[[[ PheXpe)—pote) a7,
as we should do if we followed the procedure of §14.2.

‘We have seen that it is not necessary to know the perturbation in the
eigenfunction in order to determine the first-order perturbation in the
eigenvalue, i.e. the term proportional to ¢ in 3y. The same is true for
the term proportional to e2loge. However, the expression for the term
proportional to ¢* will in general involve the first-order perturbation
8p(r) in the eigenfunction, and so on. .

Whilst first-order perturbation calculations are often used, higher-
order calculations are unusual on account of their laboriousness.

Our discussion has been limited to problems of critical size. It is
possible to apply perturbation theory also to problems with prescribed
sources at finite or infinite distances, but the method in these cases is
too obvious to require detailed discussion. An example of the application

of higher-order perturbation methods to problems of the latter type is
found in Davison’s paper (12).
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THE VARIATIONAL METHOD

15.1. Critical-size problems: the general theory

Ix discussing the variational method, we shall disouss separately two
kinds of problem, critical-size problems and those governed by an
inhomogeneous equation. In both types the starting-point is the integral
transport equation, as in the perturbation method, rather than the
Boltzmann equation.

We first consider the application of the variational method to the
solution of homogenocous integral equations. The general principle in
this case is well known, but for completeness we shall develop the
treatment ab initio. The integral equation (14.1) may be written as

pr) =y [ [[ K@ > r)pte) av, (s
where K(r'—>r)= El_rl——r’l* %%%e-ﬂ(m'). (15.2)

If we assume for the moment that the system is of finite extent, the
eigenvalues y; will form a discrete set.} If the corresponding eigenfunc-
tions are normalized according to (14.17), they will, in view of the
orthogonality relations, satisfy (14.18), and this, by (14.3), can be

e [ edmreiryav =5, (15.3)

If the eigenfunctions p,(r) form a complete set, it is clear from a compari-

son of (15.3) and (15.1) that the expansion of the kernel K(r’ ->r) in
terms of eigenfunctions will be

1
K@@' —»>r1)= > Zpl(r')p,r). 15.4
(x> 1) Zy,PI Jeu(r) (15.4)
Although it has not been postulated that the p,(r) form a complete set,
it follows from a general theorem (Whittaker and Watson (52), p. 227)
that the expansion (15.4) holds for a real symmetrical or ‘nearly sym-
metrical’§ kernel, whether the p,(r) form a complete set or not.

1 This theorem can be proved in two stages. One first proves it for a bounded kernel
(52, p. 217), and then uses the obvious result that, if the original equation has only
discrete eigenvalues, so has any iterated equation, and conversely.

§ By a ‘nearly symmetrical’ kernel wo mean one which is symmetrical when the un-
known function is taken a8 p(r)[c(r)/i(r)]} instead of p(r); we avoid the more usual
term ‘symmetrizable by elementary means’, on account of its length,
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We now consider the functional

_ J[Jav [[[ avE(x' > r)pix')pt(r)
[I] #e)s*(x) av

, (15.5)

- where, similarly to (14.3),

pH(r) = e(r)p(r)/U(r), (15.6)
~ and 5(r) is an arbitrary function of r which we shall call the trial function.
. Expanding p(r) in terms of the eigenfunctions p,(r) we have

Alr) = z a;pi(r)+w(r), (15.7)

) say, where w(r) is orthogonal to every pj(r), and therefore vanishes
 identically if the p,(r) form a complete set. On substituting (15.7) into
~ (15.5) and using (15.3) and (15.4), (15.5) becomes

| 2 ai /v
= S [T e 7w

~ Xtiswell known that, if the kernel is real and symmetrical (or nearly so,

as defined in the last footnote), the eigenvalues cannot be complex, and
it follows from physical considerations (see Chapter IIT) that no y, can
. bereal and negative. The latter result also follows mathematically from
* the rapid decrease of the kernel K(r’ -» r) when [r'—r| increases, the
" position of r’ and direction of r—r’ being fixed, but the proof is too
lengthy to give here. All y, are therefore real and positive, and hence
I(p) will take its maximum value if w(r) and all a, (except the one
belonging to the smallest y,) vanish. If the smallest v, is y,, therefore,

max I(3) = 1}y, (156.9)
and the trial function 3(r) which gives this maximum is the eigenfunction
po(r) corresponding to the lowest eigenvalue.

The formula (15.9) makes it possible to give an alternative mathe-
matical proof of the statement made in Chapter IIT that this ‘lowest
eigenfunction’ is everywhere positive. For, if po(r) has a change of sign,
we take for the trial function 5(r) = |p,(r)|. Since K(r’ - r), ¢(r) and
l(r) are non-negative, the denominator of I(5) will be the same as that
of I(py). In the numerator, the pairs of points r and r’ for which
Po(r)pe(r’) > 0 will give the same contribution to the two functionals,
while if py(r)py(r’) < 0, the contribution to I(5) will be positive and that
to I(p,) negative. Hence I(5) > I(p,), which is impossible by (15.9).
The assumption that py(r) changes sign is therefore false.

(15.8)



XV, §1 CRITICAL.SIZE PROBLEMS 197

In the above derivation of (18.9), it was tacitly assumed that the
series (15.4) and (15.7) were such that the operations involved were
permissible. This assumption may be avoided by using a different
derivation of (156.9). The trial function is represented as

B(r) = p(r)+¢f(r) (16.10)
and substituted into (15.5), with the condition that J () is & maximum
for (r) = p(r). This implies that 21(p)/oe vanishes for ¢ = 0; if this
condition is satisfied independently of the form of f(r), it follows from
(15.2), (14.3), and (15.6) that p(r) in (15.10) is & solution of (14.1). The
solution of (14.1) is therefore equivalent to finding the extremum of
(156.5). This derivation, however, shows only that J(5) has an extremum
for j(r) = p(r), and an additional investigation is needed to find whether
it is & maximum or & minimum if (15.9) is not derived by the use of (15.8).

We now consider systems extending to infinity, and make two
assumptiona: (1) that there is no supply of neutrons from infinity, (2)
that, if ¢, is the largest value of ¢(r) in the system, and c,, i8 its largest
value in the media extending to infinity, then

¢ >1>cy; (15.11)
this condition has been satisfied hitherto in applications of the method.

If the eigenvalue y,is smaller than 1/c, it follows from the conditions at
infinity that p,(r) decreases exponentially for |r| - co, and the integrals
in I(p;) will therefore be absolutely convergent. It is consequently
necessary to choose 3(r) in such a way that the integrals in (15.5) are
absolutely convergent, and in this case it follows as for a finite system
that I(p) is stationary for 3(r) = p,(r) (using (15.10)). The nature of the
extremum is found as follows: we consider & sphere of large radius M
and the funoctional 1,,(5) obtained by omitting the contribution to I (5)
from points outside this sphere. Since the integrals in I(3) are absolutely

convergent, lim I,,(3) = I(3).
M-

However, for each finite M, I,,(5) is the functional I () for some finite
system, and is therefore a maximum when pis the ‘lowest eigenfunction’
of that system. Passing to the limit M —» oo, we see that (15.9) holds for
an infinite system also, at least when the assumptions (1) and (2) above
are satisfied,

If the eigenvalue v, is greater than 1/c,, it is possible to find a solution of
(14.1) for any such y,, provided that the infinite region where c(r) = c,,
is fairly extended, and not (e.g.) a rod or a slab of constant thickness.
The eigenvalues greater than 1/c,, therefore form a continuous spectrum
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. of eigenvalues, and y = 1/c,, is the lower edge of this continuous spectrum,

. If there are no discrete eigenvalues, then (15.9) gives this lower edge.

- Toapply (15.9) to the determination of the critical size, we recall that,

" for a critical system, y, = 1, If the system depends on a parameter a,

. 8ay, and the critical value a, is required, we first find y,(a) for every a by
means of (15.9); then a, is given by

Yolag) = 1. (15.12)
It is important to notice that, if the relative deviations of the trial
~ function A(r) from the ‘lowest eigenfunction’ p,(r) are of the order
© of ¢, the deviation of I(3) from 1/y, will be of the order ¢*. This follows
. from a comparison of (15.7) and (15.8). Consequently, even a poor trial
+ function will give a fairly acocurate value of ve» 8nd 8o the use of
© (15.12) will give the critical size to quite good accuracy.

15.2. Examples of applications
- The variational method was first used in neutron transport theory by
. Pryce (43) to determine the critical radius of a bare homogeneous sphere
with ¢—1 comparable with unity. Since ¢ is the same throughout the
- system, it is not necessary to use the parameter ¥, ¢ itsolf being employed.
. The integration over angles can be effected, since in a spherical system
the ‘lowest eigenfunction’ is spherically symmetrical, and (14.1) then
- becomes, on putting p(—r) = p(r) (see § 8.2),

a
_ ¢ L\ W
o) =5 [ B(" ) ar,

- and hence (15.9) gives

a a

[ | Bir—r\tyr'p(r")rp(r) dr'dr
- = max =29 . (15.13)
© 2l f [r(r)]® dr
-a
As trial function, Pryoce took the simple expression
Blr) = 1—qr2, (15.14)

where g is the constant to be determined by variational methods. With
- this trial function the integrals in (15.13) can be expressed in terms of the

functions E, (z) (see (10.59)), which are tabulated. The object of Pryce’s
~ calculations was to find a/ as a function of ¢ rather than for a particular
- value of ¢, and the trial function (15.14) does not involve ¢, 8o that no

appeal to (15.12) is necessary, and therefore none of the numerical work
is wasted.
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In order to find the accuracy of the results, Pryce repeated the calcula-
tions for a few values of ¢, using the improved trial function
plr) = 1—gqrt—q'rs, (15.14')
and found that, except for c—1 £ 1, the results obtained from the two
trial functions (15.14) and (15.14’) differed only in the fourth significant
figure. This confirms that the trial function (15.14) gives quite an
accurate value of a/l unless c—1 < 1. '
Fuchs (21) subsequently extended this work to the case of a reactive
spherical core surrounded by a reflector of finite thickness with the

same mean free path as the core. The trial function for the core was
(15.14), while for the reflector it was
p(r) = A+ Bjr, (15.15)

Inorder to have two disposable constants and not three, Fuchs stipulated
that the function g(r) should be continuous at the interface. The critical
radius of the core was tabulated as a function of the reflector thickness
and of the values of ¢ in the core and in the reflector. Asin Pryce’s work,
sinco ¢ was not fixed in either medium and the trial function did not
depend on ¢, no appeal to (15.12) was necessary and none of the numerical
work was wasted. Though the trial function used was a poor one (for
instance, it made no allowance for the rapid variation of p(r) near the
interface), the results for c,—1 comparable with unity and the reflector
thickness comparable with the core radius appear quite satisfactory.

Wilson (56) used a different trial function for the case of a large
core (c,—1 < 1) in an infinite reflector, again with the same mean free
path as the core. On the basis of the arguments given in Chapter V (see
equation (5.38)), he took as the trial function for the core the spherically
symmetrical solution, regular at the origin, of the diffusion-approxima-
tion differential equation for the core, and as the trial function for the
reflector the similarly appropriate solution for the reflector, leaving the
ratio at the interface as the variable parameter; that is,

gin «r .
in the core,
plr) = Kr (15.16)

Ae"Llr  in the reflector.
Since x and L depend on the values of ¢ in the core and in the reflector, it
is not possible to interpret yc(r) as the value of ¢(r) for another system
of equal significance. It is therefore necessary to use (15.12), and this
means that the calculations of y,(a) for @ # a, (the solution of (15.12))
do not contribute directly to the final result, In order to minimize this
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wastage, it is important to use trial values of @ as near @, a8 possible,
Wilson accordingly found the first trial value of a by other methods and
used the variational method only to improve this value.

The fact that some of the calculations are liablo to be wasted is a
disadvantage of Wilson’s method, but this is usually compensated by the
high accuracy obtainable by the use of his trial funection. However, in
the case of an infinite reflector with small capture (1—c¢, < c,—1),
difficulties may occur since y = 1/e, is the edge of the continuous spec-
trum, and consequently y,(a) has a singularity at a = a*, where a* is
the solution of y,(a*) = 1/c,. The variational method is, in fact, not
really suitable for such cases, even though it may be made to give
reasonable results with sufficient trouble.

It has been remarked in Chapter VIII that the most accurate results
are obtained from the diffusion approximation by imposing a certain
discontinuity on py.(r) at the interface. The chief purpose of Wilson's
calculations was to find an independent estimate of this discontinuity,
and it was found to be very marked.

15.3. Simpilﬁcations for slowly varying trial functions

In the examples of the Preceding section, the mean free path was the
same throughout the system, and the geometry was very simple, If
these conditions no longer hold, the integrals in (15.5) become rather
unwieldy, and it is the difficulty of evaluating the variational integrals,
even with simple trial functions, that places a limit on the practical
applicability of the variational method.

However, it has been pointed out by Hitchcock (unpublished) that
under certain conditions the properties of the kernel (15.2) can be used
to halve the number of variables of integration, i.e. to replace the sixfold
integral by simpler ones. This is possible if (1) the system is non-re-
entrant and free from cavities and has boundaries of a simple shape
(e.g. planes), all dimensions being large compared with the mean free
paths involved, and (2) the trial function used in each medium is a slowly
varying function whose analytical continuation is regular in all space.

We shall illustrate this by taking the case of a bare infinite slab. Here
it is necessary to evaluate the double integral

Is = .21_1 fa fEI('””‘l'“’")ﬁ(x)p(x') dzdz’, (15.17)

-G —~a

and we wish to represent this approximately as a sum of simple integrals
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and integrated. terms. Since the analytical continuation of plx) is
assumed regular and slowly varying for all z, we can write

a L] -G o«
_1_ le—z'\_, ., ., _ 1 1 1
2le1( z )p(z)dx "é‘lf‘é‘lf“z_zf (15.18)
2a ~w — a

Expanding 5(2’) in the first term in powers of 2’ —2 and integrating term
by term gives L Bd eas
( t3amts At ---)ﬁ("’),

and 8o (15.17) can be written

I*= fﬁ(w)[l +’—;£-,+...]p(x)dz—

1 i [ —2
—?lfdzfdzEl( :

a

Plx)p(x")—

a

-a 0
1 v [T —2
+§-lfdzfdzEl( z

)
_.2% f da rdx’El( _l‘”'),a(x)ﬁ(x')+
Jotrpte)+

Assuming that ¢ > ! and that p(z) varies only slowly, the last two
terms in (15.19) can be neglected. In the remaining two double
integrals, we expand j(x) and p(z') in powers of z—a and ’'—a in the
first, and of z+-a and #’+a in the second, and integrate term by term.
The final result is

r= | ﬁ(x)[l+u*§j;';+wj——;+--.]ﬁ(z>dz—

— [+ 25 g ) (2] +

da
m=0

—the same with —a instead of a - O(e-3#), (15.20)



202 THE VARIATIONAL METHOD XV,§3

If p(z) is in fact regular and slowly varying (in terms of ) for all z, then
the series in (15.20) will converge rapidly, and it is sufficient to take only
the first few terms of each. If 3(x) varies rapidly, however, a formal
application of (15.20) would lead to divergent series, while, if 5(x) has a
singularity for a finite z outside the interval considered but varies
slowly in the interval, the series in question are asymptotic, i.e. the first
few terms give a fair approximation.

The method described in this section could be applied to Wilson’s
problem (equation (15.16)), but, in general, problems where Hitchcock’s
conditions apply are somewhat rare,

15.4. Problems with inhomogeneous equations: the general
theory
15.4.1. Finite systems
We now consider the inhomogeneous equation (4.15'), and rewrite it as

p(r) = [[[ K(x' > r)p(’) V" +4(r), (15.21)

where K(r’ - r) is given by (15.2) and g(r) is the flux of neutrons which
come directly from the sources without collision.t

In applying the variational method to homogeneous equations, we
saw that there was a general characteristic of the system (the lowest
eigenvalue y, or the critical size) which could be determined by this
method much better than p(r) itself. The same is true for inhomogeneous
equations; the corresponding quantity in this case is

J' f j pH(r)g(r) AV, (15.22)

and we shall see in the next section that this very quantity is often of

- interest,

To determine (15.22) we introduce the funotional

I@) = [[[ @[ [[[ 5B @ > 1y ar—pr)+29)] ¥, (15.23)

' where p(r) is again the trial function, and pl(r) is defined by (15.6). The
. functional (15.23) clearly reduces to (15.22) if 5(r) = p(r). We shall now

show that, firstly, for critical and subcritical systems the functional
* (15.23) has a finite upper bound equal to (15.22) and, secondly, for such
; systems (15.23) gives a fair approximation to (15.22) even for relatively
‘ poor trial functions. To do so, we represent 5(r) as

A(r) = p(r)-+-8p(r), (16.24)
t+ This use of ¢g(r) differs from that of earlier chapters.
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where p(r) is the exact solution of (15.21), and substitute this into
(15.23), using (15.21) and assuming for the moment that

[{f A [[[ 8ot K (x> 1) dv'—sp(r)] av

=[{f s,,*(r)[ [f f ﬁ(r')K(r'—»r)dV'—ﬁ(r)] av. (15.25)
We then find

Ip)=[[[ '@ av+[[ o' @[ [ [ ote)K (" > r) a7 —5p(r)] av.

(15.26)
On the other hand, using 8p(r) as the trial function in (15.9), we find on
the assumption that f f f 3p'(r)8p(r) dV converges (it is positive, since
8pM(r) = e(r)8p(r)/U(r):

[[] 3@ [[[ sotr )& > 1) a7 av < (1) [ [[ Bt rrdp(r)a,
(16.27)

where y, is the lowest eigenvalue of the corresponding homogeneous
equation.

The formula (15.9) has, it is true, been derived rigorously only for finite
systems. However, (15.27) may be extended to infinite systems, since

(15.9) gives for finite systems (denoting by y,,, the lowest eigenvalue for
& system of radius M):

f f f 8H(r) f J' f Sp(r")K(x’ - 1) V' AV < f f f 3o} (r)op(r) dV.
Ir<M 1P < M Yout ¢ oy

If pon(r) is the ‘lowest eigenfunction’ for a finite system of radius M,
then, by using in (15.9) the trial function 3(r) = pey(r) for |r| < M, = 0
for |r] > M, we find that 1)y, < 1/y,, 80 that the above inequality
still holds if 1/yq,, is replaced by 1/y,. Since the integral [[[ 8p*(r)3p(r)aV
is assumed absolutely convergent, we can pass to the limit M — oo, and
this gives (15.27)

A comparison of (15.26) and (15.27) shows that for y, > 1 (critical
and subcritical systems) we have

mexJ(@) = [[[ple)r) AV = J(p)  (ro=1), (15.28)

and this confirms the first statement about the functional J(5) (15.23).
For supercritical systems, however, (15.28) does not hold, and J(3) can
be made as large as we please if Sp(r) is sufficiently large and nearly
proportional to the ‘lowest eigenfunction’.
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The relation (15.26) also shows that, if
A(r)—p(r) = Ofe),

then J(B)—J(p) = O(e?), (15.29)
and this confirms the second statement about the functional (15.23).

To complete the proof of (15.28) and (15.29) it is still necessary to
justify (15.25) and, if [[[ 8p'(r)Sp(r) AV diverges, to test the applicability
of (15.27). This s easily done for finite systems. Firstly, the convergence
of (15.22) implies that

J' f f pH(r)p(r) AV (15.30)

oconverges, since the divergence of the latter can be due only to singulari-
ties of p(r), which in turn must be due to singulurities of ¢(r) which
would imply the divergence of (15.22), since the leading terms of p(r)

and ¢(r) at such singularities would be the same.
Next, the integral -

J’ J’ f pH(r) f J’ J' E(r' > r)p(r’) AV’ dV
must also converge absolutely, since (15. 30) has a non-negative integrand
and therefore converges absolutely, if at all.
It is clearly rational to use only trial functions such that the conver-

gence of these integrals is as good as the convergence of those for the
exact solution, and so

f f f A(r) f i f K(r' > r)8p(r’) AV’ dV
will also converge absolutoly. We can therefore interchange the order of
integration, and since by (15.2), (15.8), etc.,
P'(r)E(r’ > r)3p(r’) = 8p"(r')K(r -> ')p(r),
we at once obtain (16.25).
It also follows from these arguments that for a finite system

J[] setwisete) av
converges, and this justifies (15.27). The proof of (15.28) and (15.29)
is now complete for finite systems.

15.4.2. Infinite systems. The edge of the continuous spectrum

We now consider systems which extend to infinity. If in all regions
which extend to infinity the capture is non-negligible (¢ < 1), then the
analysis is the same as for finite systems, provided that ¢(r) is quad-
ratically integrable and there is no supply of neutrons from infinity. In
these conditions, the neutron flux p(r) in each region for which ¢ < 1 will
consist of & part proportional to ¢(r) and a part which behaves, for
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Ir| - 0o, approximately as exp(— |r|/L), where L is the diffusion length
in the medium concerned. Since g(r) is quadratically integrable, so is
p(r), and therefore (15.30) still converges, and consequently (15.25) and
(156.27) hold.

If there is a supply of neutrons from infinity, this is equivalent to a
source at an infinite distance; ¢(r) in (15.21) therefore does not represent
all the physically relevant sources, and (15.28) and (15.29) cannot be
expected to be valid.

In the remaining case, where non-capturing media extend to infinity,
the homogeneous equation (15.1) has a bounded stationary solution for
any y > 1, so that y = 1 is the edge of the continuous spectrum.t As
before, we are chiofly interested in the solution of (15.21) which does not
involve a supply of neutrons from infinity. This means that p(r) is
bounded at infinity; but, since for a non-capturing medium the current
is zero for any constant flux, p(r) need not vanish at infinity, The
integral (15.30) therefore diverges in general, which complicates the
analysis; we shall, however, discuss this case further, since it is one of

the most important applications of the variational method. In doing so,
we assume that

(i) the corresponding homogeneous equation has no non-trivial
solution bounded at infinity;
(ii) for any absolutely integrable g(r), (15.21) has a solution bounded
at infinity, which is non-negative if ¢(r) is non-negative;
(iii) the system is not supercritical, i.e. (15.1) has no eigenvalues loss
than unity.

In view of (i), the bounded solution referred to in (ii) is unique, and our
earlier remarks about non-capturing media imply that this solution is
the one which involves no supply of neutrons from infinity, i.e. the
solution required.

If the flux increases indefinitely with |r|, there must be a supply of
neutrons from infinity, and so the assumption (i) implies that in the
absence of such a supply the homogeneous equation has no non-trivial
solution, that is, the system is ‘effectively subcritical’, and y = 1 is not
an eigenvalue, even though it is the edge of the continuous spectrum.

t For simplicity, we disregard the case where (for instance) @ rod or a slab of flnite
thioknesas extends to infinity. In such cases the effect of a non-capturing body is approxi-
mately the same as that of a slightly larger body with a small capture. It is also possible
that such & rod (etc.) can be multiplying (¢ > 1) without rendering the problem physically
meaningless. In the remainder of this section we consider only systems such that y = 1
is the edge of the continuous spectrum ; this replaces the condition (o) = 1,
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The solution for a system which is suberitical in the strict sense, with

no supply of neutrons from infinity, can always be obtained by means of
the Neumann series ‘

p(r) = g(r)+Ag(r)+A%q(r)+..., (15.31)
where Ad(r) = f f j K(r' > r)¢(r’) dV". (15.32)

The arguments of the preceding paragraphs suggest that (15.31) is true
in the present case also, and this may be proved as follows. Since g(r)
is assumed absolutely integrable, it is sufficient to consider only non-
negative g(r), and then p(r) is also non-negative, by assumption (ii).
Iterating equation (15.21) » times, we have

n—=1
p(r) = Anp(r)+ mZ_oA"'q(r),
and since K(r’ -> r) is also non-negative, this implies that

p(r) >3 Amg(r).

Thus, for fixed r, the partial sums of the serics ¥ Amg(r) are bounded,
and the series therefore converges, since its terms are positive. The
series clearly satisfies (15.21), and nowhere exceeds p(r); since p(r) is
the only bounded solution, the sum of the series in question must be
identical with p(r). This proves (15.31) for the present case.
We now return to (15.25) and (15.28). We write for brevity
o(r) = p(r)—Ap(r); dg(r) = 8p(r)—ASp(r), etc.
and

($180) = [[[1O1s0) AV = [[[ felr)UrNs(e)ga(r) aV
and introduce the following additional assumption:

~ (iv) the trial functions used are such that the corresponding §(r) (see
(15.33)) is absolutely and quadratically integrable; this implies
that 5(r) can be reconstructed from §(r) by (15.31). '
-The actual free term g(r) of the equation to be solved possesses the
same properties, because of the assumptions made previously. We have
assumed the convergence of (16.22), and this implios (see remark after
(15.30)) that g(r) has no singularity capable of causing (g, q) to diverge;
the latter then converges by the absolute integrability of ¢(r) (assump-
tion (ii)). Since p(r) is bounded at infinity, it follows that (15.22) con-
verges absolutely. It can be deduced from assumption (iv), by a similar
argument, that (g, 5) converges absolutely.

, (15.33)
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Replacing now 3p(r) in (15.27) by g(r), we see that (g, Ag) converges
absolutely, since (15.27) is valid whenever the right side converges. Next,
if we start with the functional I,(3) = (5, A"p)/(p,p) instead of
I(p) = (p,Ap)/(p, p) (16.5), and proceed as in the derivation of (16.27),
we can show that, if (g,9) converges, each of the integrals (g, A"q)
converges absolutely. Further, (g, A»*™q) = (A"g, A™q), and by assump-
tion (iv) all the above conclusions hold when ¢(r) is replaced by g(r).
Using Schwarz’s inequality, we see that the integrals (Ang, A™j) also
converge absolutely. All the conditions of Hopf’s lemma (6.68) are
therefore satisfied, and so

(5, 89) = (3¢, 2 A™]) = (¢, 2 A3q) = (§,3p), (15.34)
which is (15.25). That is, (15.25) holds whenever the assumptions
(i)-(iv) are satisfied, whether or not (p,p) converges; and then (15.26)

- follows. _

It is possible to prove (15.34) without using Hopf’s lemma. To do so,
we start with non-negative 3¢ and § and show the permissibility of
interchanging the order of summation and integration; then we represent
any 8¢ and § as the differences of non-negative functions and use the
absolute convergence of all the integrals involved.

It is necessary to examine the sign of the second term in (15.26). Thia
cannot be done by means of (15.27) as for finite systems, since the
integral (3p, 3p) may not now converge. However, if we use the definition
of 3¢(r) (15.33) and take 3p(r) from (15.31), and prove the permissibility

of interchanging summation and integration as for Hopf’s lemma, we
can rewrite (15.26) as

(@)= (p.9)— 3 (00, A%%0). (15.35)

The absence of negative eigenvalues y implies that (3¢, A"3q) is positive.
The sum Y (3¢, A"3q) is therefore non-negative, and (15.28) follows.

15.4.3. An alternative functional

Instead of J(5), a closely related functional H(3) is sometimes used; it
is obtained as follows. We take the trial function in J(p) in the form

) = Af(x), (15.36)
where A is an adjustable constant and f (r) is normalized in some manner,
and perform the variation of 5(r) in two stages, first varying A with f(r)
fixed, and then varying f(r) with 4 = A(f) already determined. Sub-
stituting (15.36) into (15.23), we have

J(4f) = 24X(f)—-4*Y(f),
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where X(f) and Y(f) are integrals depending on f(r) but not on A.
Making this expression a maximum with respect to 4, we find
max, JAf) = [X(NPY(f) = [AX(f)]2/42Y(f),
which, on replacing 4X(f) and 42¥( f) by their explicit forms, becomes
T L[f] #'w)a) av]? - H),
T TR [T ek ~marTa (02 7)
16.3

say. On comparing (15.37) with (15.28), we see that whenever the latter
holds we have also

max H(p) = [ [ ptx)g(r) av = H(p), (15.38)
and, similarly to (15.29),
H(p)—H(p) = O(e") if p(r)—p(r) = Ofe). (15.39)

Thus the functional H(p) is applicable under the same conditions as
J(p), and if the trial function has the form (16.36), it will give the same

value of (p, g) and the same optimum shape (represented by f(r)) of the
trial function 3(r).

If the trial function is linear in the adjustable parameters, i.e. if
Br) = 3 4. fim), (15.40)

where the f,(r) are chosen beforehand, then the maximization of the
functional J(5) will clearly lead to a system of equations linear in the 4,.
Kourganofft (27, p. 142) considers this as a superiority of J(3) over
H(p), but in fact the latter has the same property: after cancellation,

the equation , { [; X, Al].]

2 =0,
04\ 3 Vo dy 4,

where the X, and Y, are the appropriate integrals, reduces to
;Y“Ak;X,A, = X‘EY,,‘A,A,,.
On applying these for all § and eliminating 3 ¥, 4,4,, we have
[X,;Y,,,A,,—X,ZY,,‘A,,] X, 4, =0,
and to satisfy these last equations we must put
;}",A, = CX,, (15.41)

t It should be noted that what we call J. (#) is what Kourganoff calls — H(5), and our
H(p) is the reciprocal of his I(j).
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where C is an arbitrary common multiplier. (We reject solutions such
that 3 X; A, = 0, since they lead to a minimum of H(p) and not & maxi-
mumn.) Had we used the functional J(3), we should have obtained the
same equations with C = 1, and the fact that O is arbitrary when H(p)
is used is really an advantage.

The functional H(p) is homogeneous in A(r) (see (15.37)), and conse-
quently the value of-(p,q) given by (15.38) is independent of C. If,
therefore, we want p(r) itself as well as (p,q), the latter can be determined
first and C then chosen in the light of our knowledge of (p,¢). This will
be illustrated in the following section.

15.5. Examples of applications

15.5.1. LeCaine’s variational solution of Milne’s problem

As our first example of the use of the variational technique discussed
above, we shall take LeCaine’s solution (28) of Milne’s problem for a non-
capturing medium (¢ = 1). With the mean free path as unit of length,
the corresponding integral equation (6.1) is

. ®
p@) =} [ ple)By(lx—2')) da. (15.42)
0
For ¢ = 1, p(x) is asymptotically linear, and to reduce the problem to

one with no supply of neutrons from infinity we put

plx) = p'(0)[z+py(2)], (15.43)

where p,(z) is bounded at infinity. Substituting (15.43) into (15.42), we
have .

p@) = } [ pu(@)By(ls—a')) de’ + 3 Eifa), (16.44)
0

where Ey(z) is given by (10.59) with » = 3; and we shall be chiefly
interested in p,(c0). This may be found as follows, If p(zy = z) is the
flux at 2 due to a plane source of unit strength at z,, with no supply of
neutrons from infinity, then the solution of (15.44) is

@) = [ play > 2)}Ey(ao) e,
0

Interchanging « and x,, applying the optical reciprocity theorem (4.26)
in the form (8.77), and taking the limit as x, —+ 00, we have

pr() = } [ Byz) lim plzy > z) de. (15.45)
0 —+00

The qud.ntity lim p(z, > z) is clearly the p(z) of (16.42), divided by
. Tyg—r 0
3666.90 P



210 THE VARIATIONAYL METHOD XV, §8

[4(0)], and since, for ¢ = I = 1, p’(c0) = 3|j(0)] (see (6.38)), we have
from (15.43) and (15.45)

() = 1 [ [+ (@) Ey(x) de = §+3 [ py(a). 1Ey(e) do. (15.45)
[} [}

The integral in (15.45') is of the same form as (15.22). The assumptions
(i)-(iii) of § 15.4.2 are satisfied by the system considered, and (iv) is
satisfied by any asymptotically constant trial function p,(z). Thus
(15.38) gives :

() = 3+3 [Z p1(x) Ey(x) dx]’
P1\®) = max

[ 7@)[28:2)— [ ) Ey(lz—y)) dy] d=
’ ° (15.46)
provided that p;(c0) = 0. If 5,(z)is a constant, the formula (15.46) gives
Pr(0) = §+3 = = 0-7083,
which deviates from the correct value (0-7104) by only 0-3 per cent.
LeCaine took the trial function
Pi(x) = A+ B, Ey(x)+ By Ey(x), (15.47)
since this expression has the correct asymptotic behaviour at infinity
Pr(x) ~ py(e0)+O(e~7[x),

and the correct behaviour near the origin (a logarithmic singularity in
the derivative). This trial function gave p,(c0) correct to eight significant
figures. Choosing the constant C in (15.41) to make 4 in (15.47) equal
p1(c0) from (15.46), and using the optimum values of B,/4 and B,/4 as
determined by LeCaine, we find

p1(x) = 0-710446— 0-243608E,(z)+0-224409E,(x).  (15.48)
At 2 = 0 this differs from the correct value p,(0) = 1/¥3 (6.47) by less
than 0-3 per cent., and the error decreases extremely rapidly as z increases.
Thus, though the variational method is primarily intended to give the
value of the integral (15.22), it also gives a good approximation to the
unknown function itself, in certain circumstances.

LeCaine has also extended these calculations to the case of ¢ < 1 (29),
and used the values of p(z) obtained in order to construct the polz) of
§ 6.5. Sykes (46) bas given a convenient form of the results for 1 —¢ < 1.

15.5.2. Marshak’s determination of the linear extrapolation length of a

black sphere

Marshak (36) has determined by the variational method the linear
extrapolation length (see § 8.5) at the surface of a black sphere in an
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infinite non-capturing medium. In this case the equation (4.15’) becomes,
‘on integration over angles,

rp(r) = % fdr'f'p(f'){El(If—r'l)-— \((r*—a®)i+(r2—a?)i]},

(15.49)
where a is the radius of the black sphere, and we take I = ¢ = 1 for the
surrounding medium. It follows from (5.38) and the definition (6.24),
since V2pyp = 0 for ¢ = 1, that at large distances the solution has the
form plr) = pleo)[1—{a*fr(a-+N)}+0(e)], (16.50)

where A is the linear extrapolation length in units of the mean free path.
In view of (15.50), we put

rp(r) = p(e)[r—py(r)], (15.51)
and our chief object will be to find p,(c0). Substituting (15.51)into (15.49),
we obtain
palr) = [ pal)K(r, ) dr' +-5(r)
where *
K(r,r') = H{Ey(Ir—r'|)— Ey[(r*—a®)}i +(r'2—a?)i]}
9s(r) = HaEy(r—a)+Ef(r*—a?)}]— Ey(r—a)}

(r > a).

(16.52)

It is convenient to extend the definitions of pa(r) and gy(r) tor < a by
putting

palr) = } [ ol WEu(ir—r' )= Byfr+1')} dr

0 <r<a)
Q(r) =0
(15.53)
and to introduce the abbreviations -
AB) = 1 [ N Br—r )= Bylr-+r)} dr \
o

A, (r) = } [ () Bollr—r' ) —Ey(r+7')} dr’

D) = |} [ HOVBLA a1 a )= Br ) (¢ > a)

0 (r <. a))
(15.54)
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With this notation (15.52) and (15.53) become

Palr) = (A—DBy—85)p,(r)+a,(r). (15.55)

It is now necessary to express p,(co) in terms of the integral (15.22).
The optical reciprocity theorem is here not very useful, and we shall use
an alternative procedure. If we have an equation of the form

$(r) = Ad(r)+As(r), (15.56)

where A is defined by (15.54), then its solution bounded at infinity can
always be interpreted as r times the neutron flux in an infinite non-
capturifig medium due to sources of strength s(r)/4nr per unit time,
volume and solid angle (see§ 8.2). For an infinite non-capturing medium,
however, the integrated source strength must equal the outward current
integrated over the surface of an infinitely large sphere. The current at
large distances from the sources is, on our interpretation of &(r),

J(r) = —}grad[¢(r)/r].

This follows from (8.14), since L#(1—c)/I* = } for ¢ = 1,
After some simple algebra, we have

d(c0) == 3 f ra(r) dr,
H

or, gince Ar = r, $(c0) = 3 fm rAs(r) dr. (15.57)
0

This formula could have been used instead of the optical reciprocity
theorem to derive (15.45), as has been remarked by Marshak (36).
Applying (15.57) to (15.565), we find

pa(00) = 3 jgrq,(r) dr —3 j?rA1 pa(r) dr —3 frAzp,(r) dr. (15.58)
) o )

The first term on the right of (15.68) is easily found to be a%. The
second term, on interchanging the order of integration, becomes

a .
f rpa(r) dr. Substituting from (15.53) and combining with the third
[}

term, we obtain w ‘
pa(e0) = 203 [ py(r)ay(r) dr. (15.59)
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We now return to (15.52). Though the quantity p(r) is bounded at
infinity, the homogeneous equation corresponding to (16.52) is an equa-
tion for rp(r), and the latter cannot be bounded at infinity unless it
vanishes identically. The kernel K(r, ') is not of the form discussed in

§ 15.4.2, but it is symmetrical and positive, and { K(r,7’) dr’ is less than

unity for any finite . The kernel therefore possesses the properties
which were used in § 15.4.2, and thus (16.28) holds if the trial function
Pa(r) is asymptotically constant (assumption (iv)). Hence, expressing
p2(c0) in terms of A by (156.50), we have finally

o _w [t al”

AT 4

o = . (16.60)
l ﬁl(’)[ﬁa(")" f Balr) K (r, 7" dr] ar'

provided that g3(c0) = 0.
Marshak used the trial function p,(r) = constant. Even this gave
values of A in excellent agreement with those found by Davison (12),

who used a combination of the perturbation and spherical harmonics
methods.

15.5.3. The neutron flux near a free surface

The two foregoing examples were concerned with systems extending
to infinity., Although the variational method has not yet been much
applied to inhomogeneous equations for finite systems, we shall give
two instances where its use would be very profitable. We shall also
illustrate the precautions which are sometimes neoessary,

We first consider a bare plane slab of critical thickness; the problem
is to find the behaviour of the neutron flux p(z) near the free surfaces
z = Fa. We know from previous work (6.54) that the derivative of the
flux has a logarithmic singularity there, that is, near z = o (for instance)

,%.’ = K,log(a—2)+ K, +0[(a—z)log(a—2)], (15.61)

and the formula (6.54) shows how to determine K,. If the value of K, is
also needed, we can proceed as follows. Since p(x) must be an even
function of z, equation (4.15) for this case can be written:

ple) =2 f P& Eyjx— )+ Eyz+a)] daf,  (15.62)

0
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where the mean free path is again the unit of length. Differentiating this
equation,

dste)

P [By(le—2' )~ Ey(e+2")) da’ — [ Ey(a—2)— Ey(a-+2)]p(a),

dx
¢ { dp(z')
=4 f
° (15.63)

so that the quantity

lim {‘%’) +3 p(a)[El(a—x)—El(a-i—z)]}

(and hence also K, in (15.61)) is directly expressible in terms of the
integral (15.22) for the equation (15.63). The applicability of (15.28)
is shown by the fact that the homogeneous equation corresponding to
(15.63) is the same as that for r times the neutron flux in a sphere (§ 8.2).
Since the lowest eigenvalue for a sphere of radius a is greater than that
for a slab of the same half-thickness, the aystem where the neutron flux
is governed by (15.63) is suberitical. Thus (15.28) is valid.

We next consider the same problem for a bare sphere. It might seem
that the transformation given in§ 8.2 could be used, and then the method
for the plane case could be followed. However, the equation (15.62)
then becomes

rolr) = 2 f PoEylr—r ) —Byr+r)]dr,  (16.62)
[)]

while (15.63) is replaced by

-;—r[rp(r)] = % j % [Fp(r B (Ir—7" )+ Ey(r+r)] dr’ —

0
._.gap(a)[El(a—x)+E,(a+x)]. (15.63")

The homogeneous equation corresponding to (15.63') is (15.62). Since
the lowest eigenvalue for a slab is smaller than that for a sphere, the
equation (15.63’) (with the value of ¢ determined from (15.62')) governs
the neutron flux in a supercritical system, and the formula (15.28) is
therefore inapplicable.

This difficulty may be avoided by using an alternative equation for
dp(r)/dr, such that its lowest eigenvalue is greater than that of (15.62').
Such an equation may be constructed as follows, We start with the
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three-dimensional equation for p(r) and rewrite it for convenience as
1 . av’
r) = — e(r)p(r et ————
o) = - f f f e =,
all space

where ¢(r') = ¢ for ' <a, = 0 for ' > a. Differentiating this with
respect to a Cartesian coordinate (z, say), we have

z dp(r) - z d N\ 1pmtr—r LV
i' d?' J'J‘ "7('1;7[0(7' )p(T )]e lr Ir_rvlg’
al space
Integrating over angles, cancelling x/r and using dc(»')/dr’ = —cS(r —a),
we obtain
dp(r) = —f dp(r ) K, (r,r')dr —~ap(a) pr,a),  (15.64)
where
T 243 R2e-R
" = e L
Ky(r,r") = o7 ¥ dR
Ir—ri
r2te? _ 14 |r—r'] J— l+r+r ey
=5 —~—{Ey(Ir—7'1)—Ey(r+7')}— o et o

The equation (15.64) is of the required form, since the quantity

tim P01 i) 3.

r—a

and therefore also the constant K, in the formula corresponding to
(15.61), are expressible directly in terms of the integral (15.22) for the
equation (15.64), The lowest eigenvalue ¢ for the homogeneous equation
corresponding to (15.64) is for a flux positive in one hemisphere and
negative in the other, and will certainly be greater than the eigenvalue
for & flux positive throughout the sphere. That is, (15.64) may be
interpreted as the equation governing the neutron flux in & subcritical
system, and then (15.28) is applicable.

15.6. Miscellaneous remarks

In all the examples given above, we have dealt with simple systems.
For more complex systems, the integrals involved rapidly become very
unwieldy. The technique described in § 15.3 is useful in some circum-
stances, but it has not been applied to inhomogeneous equations, and in
general the variational method is successful only when a very accurate
result is required for a fairly simple system.
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It has been mentioned in § 15.4 that the variational method is chiefly
intended to give a single general characteristio of the solution (for a
homogeneous equation, the lowest eigenvalue; for an inhomogeneous
equation, the integral (15.22)) rather than the behaviour of p(r). How-
ever, we have seen that in the examples considered, particularly that of
§ 16.5.1, a good approximation to p(r) iteelf is sometimes obtained by
means of the variational method.

Beveral alternative techniques have been suggested for the latter
purpose. The one which has been expounded above was suggested by
Placzek and developed by Marshak, LeCaine, and Davison. Another
has been uded by Kourganoff (27), who considered the case ¢ = 1. For
this case, the Boltzmann equation (4.4) gives, on integration over angles,
a first-order differential equation for the current J(r). If the system is
80 symmetrical that j(r) depends on only one position coordinate, this
equation can be integrated at once, and thus j(r)is known. On the other
hand, for any assumed neutron flux A(r), the corresponding current can
be determined from (4.17), Kourganoff’s method consists in minimizing
the mean square deviation of this from the correct j(r).

This technique, however, is less convenient than the one which we
have discussed previously, and does not give the same accuracy for the
same effort. This is not surprising, as it makes less use of information
about the nature of the exact solution. Other alternative techniques
appear even less promising, and we shall not consider them here,

It may be asked whether the integral (15.22) is the only general
characteristic of the solution of an inhomogeneous equation which is
given to acouracy O(e?), or whether some other functional would give
another expression to the same accuracy. No such functional has yet
been discovered. If, however, it is required to determine, instead of
(15.22), the integral

(e.2) = [[[ pH(r)ayr) a, (15.65)

where ¢,(r) is some function other than the free term of (15.21), it is
sometimes possible to proceed as follows. Let the system be finite and
subcritioal, and suppose that g(r) (the free term of (15.21)) and ¢,(r) are
quadratically integrable; let p,(r) be the solution of (15.21) with ¢(r)
replaced by ¢,(r). Similarly to (15.25) we have (p,¢,) = (p,,q), and hence

(9p+p1, 99+91)—(9P—P1: 9!1"‘91) = 49([” 91), (15'66)

where g is any constant. If (P1,¢1) is comparable with 9%(p, 9), and the
trial functions p(r) and p,(r) differ from the correct solutions by a
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quantity of order e, then (15.85) is given correct to order ¢! by deter-

mining (go+p,,99+¢;) and (gp—py,gg—g,) from (15.28). Unless tho
ratio (p;,q,)/(p,q) can be estimated beforehand, the best choice of g is

given by (2,92) = 9%@,9)- (15.67)
However, there are two limitations which seriously restriot the usefulness
of (15.66). Firstly, even ifg is taken from (15.87), it is not always certain
that (p,,¢,) will be comparable with 9*(p,9); secondly, (15.66) involves
the subtraction of two quantities determined by the variational method,
and hence the sign of the error in (p»¢) i8 not known,



XVI
THE ITERATION AND MONTE CARLO METHODS

16.1. The iteration method: a general survey

TaE methods described in the last two chapters (the perturbational and
variational methods) were chiefly concerned with finding some general
characteristic of the system, such as the critical size of a source-free
system. The information they gave about the actual distribution of
neutrons was not 8o accurate as that obtainable by other methods. We
now consider the iteration method, whose main objoct is the contrary
one of determining the neutron distribution itself. The basis of the
method is as follows. Let the equation to be solved be, for instance,
(15.21), and define for any trial solution j(r) the function

Pulr) = [ [[ Kx' > r)p(r) aV' +q(r). (16.1)

Let the system be finite and subcritical, the exact solution of (15.21)
being p(r), and the ith eigenfunction of the corresponding homogeneous
equation being p,(r). We assume that the p,(r) form a complete set. The
trial function j(r) can then be represented as

A(r) = p(r)+ 3 a;pi(r) }
and hence Pr(r) = p(r)4 3. (a,fy)py(r)

Since for a suberitical system all the y, are greater than unity, a
comparison of the last two formulae shows that the iterated solution
Pi(r) differs from the exact eolution by less than the trial function p(r).
Consequently, a repeated application of (16.1) will improve the accuracy
of the solution indefinitely. It can be shown similarly that for a critical
source-free system the iterated solution is a better approximation to the
exact solution than is the original trial function. The same arguments
can be extended to the case where the p,(r) do not form a complete set,
and to the case of infinite systems, in the same way as for the variational
method. For supercritical systems the formulae (16.2) show that the
iterated solution may differ from the exact solution by more than the
initial trial function, but the stationary solutions for supercritical systems
are never of direct interest in problems of neutron transport.

The iteration may be performed either numerically or analytically, but
we shall discuss only analytic iteration. If the kernel and the trial
function are sufficiently simple, the first iterated solution may be

(16.2)
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expressible in terms of tabulated functions. It is very unusual, however,
for this to be true of the second and higher iterated solutions, and this
effectively limits analytical work to one iteration only. In order to
obtain the best results, we should therefore use a trial function which
is itself a good approximation. Further, if the deviations of the trial
function from the exact solution are very localized, these will appear as
a contribution chiefly from high-order eigenfunctions (i.e. from high
values of y,), and the formulae (16.2) show that such deviations are
reduced by iteration much more than smoother doviations which are
expressible by means of the low-order eigenfunctions.

It follows that the best trial functions for use with the iteration method
are the solutions obtained by one of the mothods discussed previously,
namely, the diffusion approximation, the spherical harmoniocs method,
the variational method (Placzek’s form), etc. These solutions are given
in terms of relatively simple functions, so that it is not excessively
laborious to perform one iteration, and they deviate appreciably from
the exact solution only in the immediate neighbourhood of the boun-
daries, i.e. in restricted regions. The improvement that can be achieved
by a single iteration should therefore be significant, especially near the
boundaries. For instance, iteration of LeCaine’s variational solution
of Milne’s problem (15.48) reduces the error at the free surface from
0-3 per cent. to 0-02 per cent.

16.2. The combination of the iteration method with the discrete
ordinates method or the spherical harmonics method
We have already encountered the iteration method, in effect, in
combination with the method of discrete ordinates in § 13.5; for, in
deriving (13.25), we approximated the neutron flux p(x) = y4(x) in the
Boltzmann equation (10.1) by the trial function (13.24), and integrated
the resulting differential equation. In order to complete the iteration

in the sense of (186.1), it is sufficient to integrate (13.25) over all . This
gives : )

1
Fule) = 2n f [F<p)e-xﬂ#+§ZT%Wﬂ] du,  (163)
which, according to the arguments of § 16.1, should be a noticeably
better approximation than (13.24) itself.
The integral (16.3) will usually be expressible in terms of tabulated
functions. This may be seen as follows. Let z = 0 be the free surface,
with the medium in x > 0. Then, for p > 0, we can rewrite (13.23) for
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the medium adjacent to the free surface as

- c A
’b 2, 1) == — 2 [eVh—p-2lp R

where F(u) has been determined from the appropriate boundary condi- -

tions (§ 13.3). The contribution to (16.3) in this medium which arises
from p > 0 is therefore

wdl 1 3
v —_— —e—Y,
o E. A, e f T t[l e,
1

where we Jhave put £ = 1/u. The integrals in this formula are easily
expressed in terms of Z,(z) by means of the relation

3 —afa)
[ & S = Mlogla-+ 1)+ Byfe(a+ 1) —e-eti(6)].

The contributions from 4 < 0 and from more distant media can likewise
be expressed in terms of Ei(z). -

The above discussion of the discrete ordinates method can be
immediately extended to the spherical harmonics method. In the case
of plane symmetry, for instance, the angular distribution is normally
considered as given by (10.2) in this method. However, it is also possible
to start with o(x) as given by the B, approximation of the spherical
harmonics method, substitute it into the Boltzmann equation (10.1) and
integrate, using the appropriate boundary conditions. The result is of
the same general form as (1 3.26). Thisis the iterated angular distribution,
and it is clearly a much better approximation to the exact result than the
formula (10.2), in the P, approximation. On integrating this iterated
angular distribution over all angles, we get for the iterated neutron flux
an expression of exactly the same form as (16.3). The same is true of
other geometries, although the expressions for the iterated angular
distribution and the iterated flux are more complicated. The iterated
angular distribution in general is no longer elementary, though some-
times expressible in terms of tabulated functions, while the iterated
flux may require a numerical integration.

16.3. Iteration depending on a parameter. Miscellaneous -
remarks
We have seen that the most profitable use of the iteration method isto
improve by a single iteration (or sometimes only half an iteration) the
results of other methods. Before the other methods were fully developed,
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however, much attention was given to purely iterative processes. The
problem is then to find from general considerations the best possible trial
function to be submitted to a single iteration. The most interesting
suggestion in this respect is that of iteration depending on & parameter.
In this case, we start with a trial function A(r) depending on one or more
parameters; having iterated it, we choose the parameters, either so that
Pu(r) coincides with (r) at some fixed point or points, or so that some
integral or integrals of py,(r) equal those of A(r). Results of surprising
accuracy have been obtained in this way. The limitations of the method
are, firstly, the arbitrariness in the choice of points or integrals; secondly,
that the results of solving a simple problem in this manner do not
indicate how to proceed with-more complex problems. We shall therefore
not discuss this mothod in detail; a fairly complete survey of the results
obtained is givon by Kourganoff (27). ' ‘

In one type of problem, however, these disadvantages are slight.
Suppose that it is desired to determine the lowest eigenvalue and the
corresponding eigenfunction of (15.1). We put, as in (16.1),

Au(r) = yAB(r), (16.4)
where Aﬁ(r) = fff K(r' - r)p-(rr) dV’,

and 7 is the trial value of y,; proceeding as in the derivation of (16.2),
multiplying the result by pf(r) and integrating, using the orthogonality
relations (15.3), we have
(Pos Pre)/(pos B) = Flvos

in the notation of (15.33), and therefore, for ¥ == y,, the integral
(Pw—Pp» po) i8 zero. Since pj(r) is non-negative p(r)—pa(r), i.e.
(1—,A)p(r), must change sign. On the other hand, 3(r) would clearly
be taken non-negative, and since the kernel is non-negative, so is
Ap(r). Thus (5(r)/As(r))—y, changes sign, and y, lies between the limits

min{p(r)/AB(r)} < yo < max{p(r)/AA(r)). (16.5)
In using the method of iteration depending on a parameter, we should

therefore select the parameter so that the ratio
pr) [ . Blr) '
min 16.6)
A0 ™ Kot ‘
is as small as possible.

16.4. The Monte Carlo inethod: a general survey

The methods discussed hitherto have been analytical methods, or at
least largely so. We finally consider a purely numerical method, the so-
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called Monte Carlo method. A detailed discussion of this method is
beyond our scope, being rather a matter of statistical theory, and we
shall give only a general outline of the method and some qualitative
comments. In fact, Monte Carlo is very seldom advantageous in dealing
with the constant cross-section approximation and isotropic scattering;
it becomes useful when the variation of the cross-sections and the
anisotropy of scattering have to be taken into account, and particularly -
when the energy variation of the cross-sections is extremely irregular.
For simplicity, however, we shall first describe its application to the case
of constant cross-sections and isotropic scattering.

The basic idea of the method is as follows. In the variational method
we form a problem in the calculus of variations whose analytio solution
would lead to the equation we actually wish to solve. This problem is
then attempted by numerical methods or trial-and-error methods. In
the Monte Carlo method we form a problem in probability whose
analytic solution would lead to the equation we actually wish to solve.
This problem is then attempted by an analogue experiment, using
tables of random numbers, or a fast computing machine to produce
such numbers. _

Suppose that it is desired to find the lowest eigenvalue ¢, for a bare
non-re-entrant homogeneous body. We first choose an integer or simple
rational number ¢’ which is somewhat greater than the expected value
of ¢,. Next, we divide the area under the curve y = e-*! into n equal
parts and choose a point on the curve over each part, i.e. we choose
n lengths R, (j = 1,2,...,n) such that llog(n/j) < R, < llog(n/[j—1]),
where [ is the mean free path. We also divide the directions € into
m sectors each of solid angle 4m/m, and choose a direction £,
(¢ = 1,2,...,m) in each sector.

We now take a set of N, test particles distributed through the body in
any manner. For each test particle, we first take a random number
between 1 and m. If this number is ¢, then £, is taken as the direction
of motion of the test particle. We next take a random number between
1 and n. If this number is j, then R, is taken as the distance travelled by
the test particle. If the point distant R, from the initial point in the
direction L, is outside the system, the particle is lost; if it is inside, the
particle is regarded as having a collision at the point. If ¢’ is integral,
the particle is replaced by ¢’ new ones, each with weight c/¢’, where ¢
is a parameter to be determined, and each of these new test particles is
treated like the original ones. If¢’is not integral, a third random number
is needed to decide whether the number of new particles is the integer
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above or below ¢/, but in either case the weight of each will be ¢/c’. When
a test particle of the sth generation, of weight (c/c¢')*, has a collision, the
weight of each resulting particle is (c/¢’)*+1. If N, is the total number of
particles in the sth generation, the total weight of these is

W, = (/'Y N, (16.7)

Let w,(r)dV be the expectation of the weight of the test particles of
the sth generation in the volume cloment dV at r. Then, if m and n are
large, and sums are approximated by integrals, we obtain the same rela-
tion between w,,,(r) and w,(r) as between j,(r) and A(r) (see (16.4)).
In practice one would normally take m and » between 10 and 100, This
confirms that tho procedure describod is in fact an analogue experiment,
provided that we deal with W, rather than N,, and shows that the Monte
Carlo procedure may be rogarded us one way of effecting the iteration.
It follows from (16.2) that, for sufficiently large s, w,(r) is proportional
to py(r), and then W, will oscillate about & constant value if ¢ is chosen
equal to ¢;. If ¢ > ¢,, W, will increase exponentially, a.nd ifc < ¢y it will
decrease exponentially.

The procedure described above gives an idea of the Monte Carlo
method as applied in its simplest form; to be of practical utility, it must
be considerably improved. Problems of finding the value, corresponding
to criticality, of some parameter are usually solved in Monte Carlo by
estimating the multiplication rate per gencration of the distribution of
neutrons for certain values of the parameter, and then obtaining by
interpolation an indirect estimate of the quantity required. In the
example given in the previous paragraph, the parameter could be
carried through the Monte Carlo calculation, and the necessity of several
separate experiments was avoided. This is not always the case, however,
for example in the determination of critical size.

Two stages can be seen to exist in the application of the Monte Carlo
method to these problems. The firstis to produce in the system a distribu-
tion of neutrons which is truly representative of the correct one. The
second is to estimate from this the multiplication rate. The first stage is
accomplished by the process of tracing neutron histories as described
above. However, as in the method of finding the eigenvalues of a matrix
by forming successive powers of the matrix, to which the above process
bears a close analogy, much labour can be saved by starting the process
with a distribution as near the correct one as possible. The second
stage is accomplished, in the simple example above, by dividing the total
weight of the neutrons present in the system at some generation by that



224 THE ITERATION AND MONTE CARLO METHODS XVI, §4

at the preceding generation. Much more efficient estimators than this
can be found, and in some cases the expected weight of the neutrons can
be easily calculated exactly.

Such methods as the above can, of course, be extended at once to
re-entrant and composite systems, anisotropic scattering, and cross-
sections varying with energy.

16.5. Comparison of the Monte Carlo and iteration methods

To examine the logical foundation of the Monte Carlo method, we shall
compare it with the iteration method in somewhat greater detail. The
former amounts to alternate iteration and replacement of the iterated
solution gy, ,(r) by an approximate expression of the form

(%)'§S(r—r,,). _ | (16.8)

This replacement introduces a certain random error whenever it is made.
However, whereas ordinary iteration (whether analytical or numerical)
is restricted to a few steps at most, the Monte Carlo method can be carried
to a very high number of iterations, and this usually outweighs the
disadvantage of introducing a random error at each step. The reason for
this may be seen as follows. We expand the deviation of the initial
distribution from the correct solution py(r), and the additional random
error introduced at each step, in a series of the form (16.2), and consider
separately the contributions due to the lower and higher eigenvalues.
The former we call the ‘smooth deviation’ and the latter the ‘high
harmonics’. It follows from (16.2) that the high harmonics are greatly
reduced at each iteration and will disappear almost entirely after the
first few iterations; moreover, they are often much reduced by numerical
smoothing before iteration begins. The smooth deviation is therefore
more important. On the other hand, the approximation of Pitl(r) by
(16.8), although it may introduce an appreciable amount of the high
barmonics, is very unlikely to add a noticeable amount of smooth
deviation, and only that which is present in the initial distribution will
affect the situation. However, since the Monte Carlo method can be
used to obtain very high iterations, the smooth deviation in the initial
distribution will also be suppressed. In fact, as regards the spatial
distribution, it is relatively unimportant what the initial distribution is,
though, as was mentioned above, such information as is available should
naturally be used, so as to reduce the amount of subsequent labour
necessary. In energy-dependent problems, however, the total energy
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spectrum mdy take many generations to lose its initial smooth deviation
(‘bias’), and in these problems it is often profitable to do a certain amount
of preliminary work to find this spectrum as accurately as possible.

16.6. Statistical fluctuations and the choice of ¢’

The method we have described is a statistical process, and therefore
the number N, of test particles in the sth generation is subjeot to
statistical fluctuation. This, by the theory of probability, will be of the
order of WN,, and the probable relative error will be of the order of
1/¥N,. In order to avoid a freak result, the initial number of particles
XN, should therefore be fairly large. Again, if ¢’ is taken less than Cq, it
follows from the discussion of (16.7) that N, would tend to decrease,
giving an increasing probable relative error. This is clearly undesirable;
we should rather wish the acouracy and reliability of the results to
increase with s, and this is why ¢’ should be greater than ¢o. In fact, we
could start with a few neutrons and use these to get rid of the initial bias,

later increasing the number of neutrons to improve the accuracy of the
estimation.

16.7. Reduction of numerical work by using the symmetry of the
system, etc, . ,
In order to obtain reasonable results from Monte Carlo without great

effort, it is necessary to eliminate all numerical work which does not

contribute directly to the acouracy and reliability of the final result.

This is true of all numerical caloulation, but it is especially important in

the present case. The following points are particularly to be noted:

(i) The samples should not be imnecessarily large. For instance, if
the accuracy is limited by the test particle population in one part of the
system, the population in other parts should not much exceed that
corresponding to the given accuracy.

(ii) The chain of events traced should not be unnecessarily long. For
instance, if the result of a series of events can be found analytically, this
should be done. :

(iii) Quantities which are irrelevant by the symmetry of the system
should be ignored.

We first illustrate (iii). Suppose that the lowest eigenvalue for a bare
sphere is required. For a spherically symmetrical system, the only
relevant position coordinate is the radial one. Further, to find the next
radial coordinate ,,, from the coordinate 7, and the distance travelled

R, we need only know the value of x = Q. r,/r, and not & itself. The
60599 Q .
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division of the directions Q into m sectors of equal solid angle is
* thus reduced to the division of the interval (—1, 1) of u into m segments,

‘each of length 2/m. The actual determination and recording of the succes-
. give r, can then easily be done graphically, using a single sheet of paper
" which at each step is regarded as the plane through the origin, r, and
r,,;- This can also be expressed by saying that a spherically symmetrio
system with isotropic scattering is equivalent to a plane system with
anisotropic scattering which is a function of position, a fact which is very
useful in the Monte Carlo method, but has no particular value for the
" analytical methods.

16.8. Reduction of numerical work by the use of analytical
methods '

We next illustrate (ii) of the preceding section. The situation covered
by this may arise, for instance, in the case of an inhomogeneous spherical
core in an infinite homogeneous reflector, the Monte Carlo method being
adopted because of the complexity of the core. This problem is quite
frequent when the variation of cross-sections with energy has to be taken
into account. If now a test particle enters the reflector, there may be a
great many events before it returns to the core or is captured in the
reflector. However, the probability of return to the core and the
expected weight at that time are easily determined analytically by
solving the problem of a point source outside a black sphere to find the
current into the sphere. (The sphere is treated as black because & particle
that enters it is returned to the Monte Carlo programme and is lost from
the reflector.) The current thus obtained gives either the probability
of return to the core or the product of the probability and the probable
weight at the time of return, according as we use c, or c,. If the core is
spherically symmetrical, however complex, the position of the point of
return is irrelevant, and then the point source can be replaced by a shell
source. The diffusion approximation solution for a shell source round &
concentrio black sphere is quite simple, and if the source is far enough
from the sphere this solution will be very accurate also.

Further, if the source is far enough from the sphere, the angular
distribution of test particles entering the sphere will be nearly indepen-
dent of the radius of the source shell, and can be determined once and for
all, either analytically or by a Monte Carlo calculation.

To combine the results of these auxiliary calculations with the main
Monte Carlo programme, the procedure is as follows. Let a be the radius
of the core, and b the radius of a sphere such that b—a is large enough,
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compared with the mean free path in the reflector, to justify the use of
the diffusion approximation. While the test particle remains in the
sphere of radius b, we use the normal Monte Carlo procedure as given
in §§ 16.4 and 16.7. When it leaves this sphere, we record the radial
coordinate of the next point where it has a collision, and then find from
the diffusion approximation solution the probability of its returning to
the core. Whether the particle returns to the core, and, if so, the angle
at which it does so, are decided by chance, knowing the probabilities
concerned. The weight of the particle is given by the diffusion approxima-
tion, as described above. After this, we can revert to the normal Monte
Carlo procedure until a test particle next leaves the sphere of radius b.
In§ 16.4 we dealt with the total weight W, of the test particles of the sth
generation. The question therefore arises, to which generation we should
allot a particle whose history between leaving the sphere of radius b and
returning to the core was not followed in detail, but estimated as above.
However, the time spent in the reflector and the number of collisions
undergone there cannot have any effect on the stationary distribution
in the core.} It is thus a matter of convenience to which generation we
allot test particles returning to the core after leaving the sphere of radius
b; the most simple and economical procedure is evidently to allot them
to the next generation after the one in which they left that sphere. Other
situations where (ii) of § 16.7 applies can be dealt with similarly.

t This follows, since if p(r, #) = p,(r) isa stationary solution of
¢
pr, 8) = f J’ av’ J’ K (v = x, t=)p(r’, ¥') d¥',
L)
-] @
where { K\(r'—>r,t)dt = [ Ky(r' - 1, t) dt, then it is also a stationary solution of
° 0

plr, o) = [ J' av f Kyt > 1, t—t)p(r", ') W',

Thus, once the system has reached a stable state, any census parameter can be used to
find whether it is suberitical, critical, or superoritical, That is, we may use neutrons which
have travelled for a given time, or a given distance, or have undergone a given number
of collisions, or ete. However, unleas the neutrons are all of the same energy, the manner
of determining the stationary distribution depends on the census parameter. It has been
shown by Fermi and Richtmyer (20) that, if the census parameter is of the form

]
= [glo e,
]

where g(v) is any function satisfying certain general conditions, the distribution observed
at a census must be divided by g(v) to obtain the actual stationary distribution.
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16.9. Reduction of sample sizes. Importance sampling

We now consider point (i) of §16.7, namely the necessity of avoiding
large samples. Suppose we desire to find the thickness a of a slab of
slightly capturing material with a uniform irradiation from z < 0 on to
the surface z == 0, such that the neutron current out of the face 2 =a
is some fraction 10~® of that into z = 0, where p is a positive integer.
This problem is easily solved analytically in the constant cross-section
approximation, but if the cross-section is variable with energy the Monte
Carlo method may prove superior.

To obtain an answer of reasonable reliability, we should allow at least
100 test particles to traverse the slab. If no special device is used, it is
therefore necessary to start with 107+2 particles, which is quite imprac-
ticable even for p = 3. To avoid this difficulty, we divide the slab into
» layers, bounded by 2 = z,, z = x,, ete. Starting with a test particle
population of, say, 1,000 falling on the plane z = 0, we replace each
particle by 10 particles every time it crosses a plane z = z,in the direction
of z increasing, and decimate it by chance every time it crosses one of
these planes in the direction of x decreasing. This will clearly make
reasonable the size of the samples to be handled. Of course, the factor
ten is used only for the sake of illustration; any other integer will serve
equally well.

In this example the shape and position of the surfaces at which we
change the number of particles are obvious, but this is not always so.
However, these surfaces can easily be determined as a by-product of the
Monte Carlo procedure. Let there be a subcritical system with a source
at 8, for which we require the neutron flux at a distant point P, the
geometry being too complex for us to choose the surfaces a priori. Then
we start with a reasonable number of particles at S and use the normal
Monte Carlo procedure until the size of the sample is reduced by capture
in a ratio decided beforehand. We then draw a convex surface through
the furthest pointe reached at that time, and take this as the first surface
at which the number of test particles is changed; the other surfaces are
similarly determined. '

This procedure has the disadvantage that the size of the sample is
increased not only where it is necessary, but also in regions whence P is
even less accessible than from 8, and thereby we increase the work
done without improving the accuracy and reliability of the answer. A
better method is as follows. The solution of the integral equation at P
due to the source at § is the same as the solution of the adjoint equation
at S due to the source at P. This follows by comparing the Neumann
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series for the two quantities term by term, since Neumann series may
always be used for suboritical systems. The Monte Carlo method can
be applied to the adjoint equation without difficulty; in faot, in the
constant cross-section approximation the only difference is that the
weights are adjusted by adding the factor c(r)//(r) where appropriate
(of. (14.3)).

We now start with a relatively small ‘exploratory’ sample at P and
solve the adjoint equation in the manner previously explained. Let
P, P, etc., be the consecutive surfaces about P at which we change the
number of test particles, and let P,,, enclose 8, while B, does not. We
stop at P, and begin from § with an ordinary ‘working’ sample, using
the Monte Carlo method on the original equation, regardless of the
depletion of the sample, until F, isreached. We then change the number
of particles and continue until P, is reached, and so on. It is clear that
no numerical effort is wasted in the second part of this procedure, and
although there was some wastage in the construction of the surfaces P,
the small size of the exploratory sample renders this unimportant com-
pared with the wastage in the cruder method described previously.

Such a procedure is called importance sampling, and the solution of the
adjoint equation thus constructed is called the importance function. It
sometimes happens that this function can be found analytically to a
rather rough approximation which is still acourate enough for this
purpose. In this case the Monte Carlo method is used only for the main
part of the calculation, and there is no wastage of numerical work.

If there is no analytical approximation available, it may be advanta-
geous to use repeated importance sampling. Here we start with a very
small sample at S and construct a very crude solution of the original
equation, using this as an importance function for the solution of the
adjoint equation. Such a procedure gives a more accurate importance
function for the problem considered, and reduces the wastage of
numerical work still further, while adding no great complication to the
effort involved. It has, however, not been used in practice to any
appreciable extent.

16.10. An alternative procedure

There is another possibility, besides importance sampling, which may
be of use, though it has not yet been tried in practice. We first prove an
auxiliary theorem.

Let the system besubcritical and the integral equation inhomogeneous,
and let the entire domain of integration in (15.21) be divided into two
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parts ¥V, and V. We consider the equations k

pa(0) = [[ [ pale)E (€’ > 1) AV +(r)
LA

. (16,
py(t) = J _( J’ pe(t)K(r —> 1) dV'+ j f f p (VK@ 1) dV’ aoa
2tV Va

Adding these, we see that p,(r)4-pg(r) satisfies (15.21), and since the
solution is unique for a subcritical system, we have

p(r) = py(r)+py(r). (16.10)
Thus, if in a certain sub-region of V; (V’, say) p,(r) iz negligible in
comparison with pg(r), then in so far as the determination of p(r) in ¥’
is concerned we can replace the solution of (15.21) by that of the second

of (16.9). This may be called the displacement of sources theorem.
If now it is desired to evaluate the integral

[l [ p(r)p(r) 4V,
: VatVp

and if p,(r) is the solution of (15.21) with f(r) instead of g(r), and p}(r)
that of the adjoint equation with free term p(r), then clearly

J[[eaererav = [[] ez ie)av.
atVs Vi+ ¥

Choosing p,(r) as pp(r) and combining with (16.9) and (16.10), we obtain

JI[ 2wwwrav
athy
=[f l’ pO)dV+ [[[ av [[[ avpy()p )R 1) (16.11)
VatVp Y Vi+¥z

The application of this result to Monte Carlo is evident. If the flux
at P (r = r,) is required due to a point source at S (r = r,), we take
p(r) = 8(r—r,), ¢(r) = K(r,~ r), and ¥, the volume inside one of the
surfaces S, constructed by starting from S. Then, under the conditions
in which it is necessary to eliminate part of a sample which is too large,
the first term on the right side of (16.11) will be negligible. The second
term can be constructed by starting from S and P at the same time and
continuing until the regions covered begin to overlap. The main contri-
bution to (16.11) comes from the first overlap region, and once the overlap
has occurred no further surfaces of discontinuity need be introduced;
the ordinary Monte Carlo procedure can be followed (§ 16.4) until the test
particle population of both samples has died out.
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We have discussed the procedure based on (16.11) as an alternative
to importance sampling. By a slight modification, the two methods can
be used in conjunction, but we shall not consider this possibility in detail.

16.11. Conclusion

The following general features of the Monte Carlo method may be
noted in conclusion:

(1) The Monte Carlo method may be regarded as in a way comple-
mentary to the analytical methods, in the sense that where the former
is most useful the latter are least useful, and conversely. The Monte Carlo
method is at its best in dealing with small systems whose geometrical
dimensions are comparable with the mean free paths involved. For large
systems, the Monte Carlo method may easily prove unworkable, unless
some device such as that of § 16.8 is employed, while the analytxoul
methods are at their bost for large systoms.

(2) Since the Monte Carlo method consists of a statistical analogue
experiment, the errors occurring in it are of a fundamentally different
nature from those in a conventional numerical approach; many applica-
tions of the latter produce exactly the same result, which will usually
differ slightly from the true solution. If, however, we conduct a Monte
Carlo experiment many times, we shall obtain a different result each time.
It is fairly certain that the mean of these will tend to the correct solution,
but any one result will have a certain probability of being considerably
in error. Although this probabiltiy is never zero, it can always be made
loss than tho probability of & human error such as an arithmetical mistako
or a misuse of a formula. Further, since the Monte Carlo method is
usually applied when the only other alternative is conventional iteration,
it is generally possible to apply a single such iteration to the result of the
Monte Carlo procedure. If this result is a ‘freak’, the fact will become
evident when the iteration is performed.

(3) Monte Carlo methods in their simplest form are often inefficient,
and an increase in accuracy of 107 requires the expenditure of 10%? ag
much labour, if recourse is had only to replication of the experiments.
We have indicated, fairly generally, several ways of overcoming these
objections, but developments are continually being made in this direc-
tion, and the reader must refer to the current literature on the subject
to obtain a more complete picture.

Note added in proof. Appendix B gives a description of another
numerical method for the solution of neutron transport problems,
recently published by Carlson (58).



XVII
ANISOTROPIC SCATTERING

17.1. Preliminary results

Tex last chapter concludes our discussion of the principal methods used
in the case of constant cross-sections and scattering isotropic in the L
system. We now examine the case where the constant cross-section
approximation is still valid, but the anisotropy of scattering in the L
system has to be taken into account. That is, we return to equation (4.3),
and now assume that /(' -» £2), though a funotion of 2.8’ only, ix no
longer a constant. 1t is often conveniont to roprosent this funotion as an
expansion in Legendre polynomials:

1@ =L S ot n@@),  any

n=9
where, from the normalization condition (2.6) and the definition (4.1),
we have b, = 1. '

We first consider the form of equation (4.3) in the case of plane
symmetry, with f(Q’ > Q) given by (17.1). If p and u’ are the z-
components of 2 and ', and ¢ is the angle between. the projections of
£ and ' on a plane = constant, we have

Y’ = dp'd ,
and Q.Q' —_ }L[L"'*-(l—ll-’)‘(l—y")i 008¢; 4‘.,.

and hence, from the properties of Legendre po]ynomi‘aié (see Whittaker
and Watson (52), p. 327), o

P

4

B(R.9) = P(uB, (i) +terms in cosrd (r=t1,2,..,m). (17.2)

.

R et g

For the plane case, according to (10.2),

B
»

HER) = Pas) = 2 > 2+ 1 @By (u).
n=0 '

Combining these formulae, we find, since

2 25 .
[ BBty = 5 iy
~1
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that the equation (4.3) reduces to

p 2t ORR LIS e Z (204106, i (@) By () + 8(z, ).

) (17.3)
In a similar manner we have for a general geometry, in the notation of
(12.5), : :

2.grady(r, 2+ 85D o & S on 119, 1 sie, 0.
i dnl &
(17.3")
We give below the values of the coefficients b, for some typical cases.

If the scattering is isotropio in the ¢ system, and the neutron flux is
roquirod, wo have on combining (2.10) and (4.1):

v .

, (M41)2 o AM A1) (M 1)
(79 > Ry = LI f vdv s(sz.sz NG = )
oo (17.4)
Making the substitution
(M2—1-at)it g

M+1

¢ = v,
using the identity
8("’1_”’!) = %”20(2""" I)Pn(fl'l)Pn(F't)»

and comparing the resulting expression with (17.1), we find at once

1
[bn]el,M = f [(M._l+8z)‘+8]’ P, (s) ds. (17.5)
21

M (M —1ad)t

If the scattering is isotropic in the C system, but the neutron energy
flux is required, we use instead of (4.1) the equation}

Fol@ > Q) = (efeey) [ (W) f ('R > v2) do

(see §4.3, formula (4.10)), where ¢, is so defined as to give the usual
normalization condition:

”f,,(sz'->sz)dn= 1.
Continuing as in the derivation of (17.5), we easily obtain

1
[bm]ew=f [(ME—140tsl b yas,  (17.6)
1

M (ML )M —Ttaty ™

t The suffix ‘ef* denotes energy flux.
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and so on. For the case of hydrogen (M = 1), the formulae (17.5) and
(17.6) become

1

[bpluz = 2 f 8P, (s) ds (17.5)
[
1

and (bpetlan = 4 f P, (s) ds. (17.8")
0

If the medium is not hydrogen, we see by expanding the first factor
in the integrands of (17.5) and (17.6) in powers of & that the coefficient
of &* is of the order of M-*. It then follows from the orthogonality
properties of Legendre polynomials that

[b2)aar = O ), (17.7)

and the same is true of b, ,.
In the case of heavy nuclei, the scattering may not be isotropic in the
C system, but it is usually given by the first few terms of (1.1) (sce
§ 1.2.2). The coefficients g,(E) in that formula vary rapidly with energy,
and so the constant cross-section approximation will not in general be
applicable. If, however, only a narrow range of neutron energies is
occupied by neutrons, so that the g, (E) do not vary appreciably within
that range, the approximation is still valid. In this case, going from the
C system to the L system, we have for the contribution to b, the

exprossion [b.] = ga[1-+0(1/311)].

It is evident that in all the above cases except that given by (17.5'),
namely when the neutron flux in hydrogen is required, the coefficients
b, decrease rapidly with n. We can therefore obtain a good approxima-
tion by terminating (17.1) after a few terms, that is, by replacing it by

F(Q~+ Q) = Zl‘ [1+3 (2n-+1)b, B(2. 2], (17.8)
us n=l

where £ is a small integer.

If (17.8) is not a good approximation, but there is plane symmetry,
the form of (4.3) can be somewhat simplificd as follows. We start, as in
the derivation of (17.3), by characterizing Q and Q' in terms of , y',
and ¢, and introduce an auxiliary function f(u’ — u), defined thus:

b
Fw > p) = [ (@ > Q)dp. (17.9)
1]

Then, if in the expression

[[ 1@ > oy w)
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we integrate first over ¢, the equation (4.3) reduces to

1
3*/!(;#) _I_!ﬁ(xi#):‘_; f Pla,w)f (W > p)dy'.  (17.10)

-1

©

Using (17.1) and (17.2), we can express (17.9) in the form:

0 > =1 3 @t 105, BB W), (17.11)

However, when (17.8) is not a good approximation, it is often simpler
to use (17.9) directly. For instance, in the case where the neutron flux
in hydrogen is required, the formula (17.4) gives

’ 1 ’ -
[ > Q)yn = o (IR.2+2.27,
and hence

[f (0~ l"')]el.ﬂ

on

=%T f {lup + (1 —p2)}(1—p'%)tcos |+
0

o'+ (1—p?)H(1—p'B)icos ¢} d
eps' | +pp’ if pi+pt>1

1 ! 2
= {9 {1—Zcos~t — P V22,0
w( 5 008 (l——p.z)‘(l—-y.")')_*—w(l ui—p'%)
if pdput<l
(17.12)

17.2. The integral equation for the neutron flux

We have seen in Chapter IV that in the case of isotropic scattering the
equation (4.3) can be reduced to an integral equation for the neutron
flux p(r) = ¢,(r) only (see (4.15')). In the case of anisotropic scattering
this is in general no longer possible. However, if the system is non-re-
entrant with a total mean free path cverywhere the same, and if (S’ -» ©2)
in each region of the system is a polynomial in €., i.e. (17.8) holds,
then it is possible to reduce (4.3) to a form rather similar to (4.15).

‘We shall show this first for a bare homogeneous non-re-entrant source-
free body for which f(2’ - Q) is linear in .Q’. In this case the right
side of (17.3’) becomes

oy [P(0)+35, 2.5}
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Proceeding as in the derivation of (4.16) we then obtain
Rylr, 02)
= f [o(r—RQ)+3b, @.j(r— RQ)]e-MdR, (17.13)
3 -
where R(r, Q) is the value of R for which r— R lies on the surface of -
the body. Integrating over all Q, putting r— RQ = r’ and using the
fact that dRAQ = dV’/|r—r'|%, we have

= p(r)=hi,{f”p<r'>f;—'_'_'r—','l”§dr"+
1 4

+3b, _Uf (r—r").j(r) rr;:f—':; dV'}. (17.14)
| 4

We consider the second integral in greater detail. Using Gauss's
theorem, and the result :

¥(r, ‘z) =

T £ e~ ds

e e, | 2 g [ )]
le—r|

we find that the second term in the bmces in (17.14) is

' ay’ e—r'\ .. .., [e—r’|\ j(r').dS
— 35, fﬂ e B ( z ) divj(r')+3b, ” E, (""“z e
8
where § is the surface of the body and dS is a vector having the direction
of the outward normal and the magnitude of the area element. Integrat-
ing (17.3") over all angles gives :
divi(r) = c—1)p(r)/l,
and thus the equation (17.14) reduces to

o) =z:'z'{ [ i[ [ e[z 0= (5]

o [ E(l_—l_l)i()__is} (17.15)
8

jr—r’|

This procedure is easily extended to any case where f(2' - Q) is a
polynomial of finite order in Q.. Thus, denoting the [\¥, ], .., of (12.5)
and (17.3’) by ¥, (r, ), taking a general scattering law of the form (17.8),
and continuing as in the derivation of (17.14), we find

e-—lr—r’lll ¢

plr) = 2 f J f lr__r_,l;;(zn+1)b,,\1fn(r', TE’:—!) av,
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or, since ¥, (r, Q) is a homogeneous polynomial of order » in the com-
ponents of £2,

SR [[ e .

n=0

(17.14)

We now consider a particular term on the right side of the expression
(17.14’). By Euler’s theorem,

2, (', r—r') = (r—r’).grad, ¥, (r’,r—r'),

eTe-rik 1 jr—1'|
s = e [ B (P77 |

Thus, using Gauss’s theorem, we see that the term in question reduces to

2 1)cb,, —_ ]
—( n:‘l-flﬂ)vc f!f lr r I”En-ﬂ. (lr lr l)dlvr'grad v (r r—t') dV'
+surface terms.

while (r—r')

Next, since V2, (r’,r—r’) = 0, we have
div, grad, ¥, (r', r—r’) = [div, grady ¥,(r’', U)]yers (17.16)

By separating in (17.3’) the spherical harmonics of order n—1, as was
done in the derivation of (12.11), we can easily express the right side of
(17.16) in terms of ¥, _,(r’,r—r’), ¥, _(r’, r—r’), etc., and thus eliminate
all the higher-order spherical harmonies, obtaining finally

pr) = [[[ p(x)K(jr—r’|) dV' 4 surface terms.  (17.15")
4

The above discussion has assumed a single homogeneous non-re-
entrant body, but it is evident that it applies also to the case where
¢, by, by,..., by vary in the system, provided that it is non-re-entrant and
that the total mean free path is everywhere the same, so that the
probability for a neutron to reach r from r’ without collision depends
only on the distance |r—r’| and not on the direction of r—r’. In dealing
with such a system, of course, Gauss’s theorem is applied separately
to each region, so that the surface terms will include contributions from
the interfaces as well as from the free surfaces. We have also assumed
that sources are absent, but this too is immaterial and was introduced
only for simplicity. .

If the system has some symmetry, it is easier to transform (17.14’) to
(17.15°) by using the symmetry from the start. For instance, for an
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infinite plane slab the equation (17.14’) has the form
¢ .
¢ , 22—z’ \ e-lr-ri
ple) = — Z (2n+4-1)b, fff Yu(@)F, (l_!‘———l‘_'—l) =P ay’.
Nw=( ) /4
. Integrating over the planes ' = constant, we have

n

‘« plx) = g-l i (2n+1)b, z A f'x/;"(x')[sign(z—x’)]n-Em +1(|-’”“‘ﬂ) da’,
, =)

n=0 m !

(17.14")
. where the a,, , are defined by P,(u) = 2 @y np™, while z, and z, corre-
spond to the surfaces of the slab. We consider the terms for a particular
" n % 0 and integrate by parts. Since

> e f [sign(e—a'J" E,..;l('”“"") &

me=0 /

) 1
. is proportional to J; F,(p) dp, and so vanishes forall n > 1, the integrated

term cannot involve i, (z), and the result of the integration by parts is

S [ttt
m=0 o

~+terms in y,(z,) and ¢,,(z,) only,

* while, multiplying (17.3) by P,_ (1) and integrating, we can express

di,(2')/dz’ in terms of ¢, ,(2') and dif,_(2')/dx’. Proceeding thus, we

can easily show that in the case of a plane slab (17 .15’} has the form
L2

p(@) = f p(x')iA“E,,m("‘“l”'.l) da’ +surface terms, (17.15%)

4 #=0

Although (17.15”) was derived on the assumption of a bare slab, the
- analysis is the same for any system with plane symmetry, and for such a
system it is no longer necessary to assume the total mean free path
constant throughout the system. This is because one can always work in
~ terms of optical thickness in the plane case in the constant cross-section
approximation, whether or not the scattering is isotropie.

For spherically symmetric systems, since the kernel K(lr—r'|) of
" the equation (17.15) depends only on r—r’l, it can be shown as in
' §8.2 that the kernel of the equation satisfied by rp(r) in the spherical
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case is the same as that of the equation satisfied by p(z) in the appropriate
plane case, and similarly that the surface terms are related in the same
way. However, the auxiliary conditions which determine the surface
values of the higher moments may not be the same (they are obtained
by applying (17.13) at the boundary of the system, multiplying by
P, ..(R) and integrating over L), and consequently it is no longer true,
ag it was in the case of isotropic scattering, that a spherically sym-
metric problem with a constant mean free path is equivalent to the
corresponding plane problem.

17.3. An infinite source-free medium
17.3.1 The formal solution

In dealing with methods of solution of the equations derived above, it
i8 natural to begin with the case of an infinite homogeneous source-free
medium. The neutron distribution in such a medium can be regarded as
the superposition of plane waves, and so it is sufficient to solve (17.10),
assuming that (z, ) is of the form

Plz, pn) = A(u)e'. (17.17)
Substituting this in (17.10), we have

1
("'Jl;"’l)“‘(l*) = o [ AW (W > p) dw, (17.18)
-1

where L is a variable parameter to be chosen so that (17.18) has a
solution; its value is, of course, the diffusion length (see§ 5.2).

We first consider the case where f(Q' - Q) is a polyhomial of com-
paratively low order in ./, i.e. where (17.8) holds. Using (17.11), and
writing 1
= [ AW)P() dw', (17.19)

-1

we can rewrite (17.18) as
1 !
[z +2)aw =3 > entrun, 4, B0,
n=0
Hence, determining A(u) and substituting into (17.19), we have

1

‘ 4
Z(2m+1)b f BB g, (= 0,1,...,1),

N:Ie

1-ul/L

-1
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" and hence L is the solution of the determinantal equation

1
¢ B (1) Pplps) dp
' Spm— 3(2m+1)b,, ;[ “TruT

= 0. (17.20)

17.3.2. The case where ¢ is close to unity. The transport mean free path
and cross-section '

Ife=1,then L = o0 is clearly a solution of (17.20). Thus, for ¢ close
to unity, there should be a solution I = L, which tends to infinity as

¢ 1. We put !/L, = v and expand the integrals in (17.20) in powers of
v. The determinantal equation then becomes

1—e(l+{2 At bio(14+B2+.)  —,at(L+pit.) . . .

IALHB AL 1—bic1+p2+.)  Bon(l+9+..)

—Ar(1+p2+.)  Phev(l+pr+.) 1—bye(l+{p2+..) . . .
=0.

It is evident that, for small v, 1—c¢ is of the order of 2. Dividing the
first row and column by » and collecting the terms which remain finite

when v tends to zero (only even powers of v can enter the final expression),
we obtain:

l—c ¢ bec
e ¢ .
v 3 — 003,
c
3 1—-b,¢
and henoce also
I l
E— 3 — - 1 -21
Lo = = eyl +00—o)] (17.21)

Transforming this expression similarly to (5.15 a), We can rewrite it as

[ Lk 13 _
L°—[3(1—-b1)] [14-0(1—c)]. (17.22)

In the above derivation we have imposed no restriction on the value of
any b,, though of course none of them can exceed unity, since f (Q’ — Q)
is non-negative. Thus, irrespective of the values of the b,, for small
1—c the leading term in the diffusion length L, depends only on b,,
while by, by,..., b, enter only in the correction term.

The quantity be = 1,/(1—b) (17.23)
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is often used; it is called the iransport mean free path. In terms of this,
the expression for the diffusion length can be written

L= (%)*[1-;-0(1—@]. (“5(17-24)

By analogy with formula (1.3), we introduce also the transport cross-
section, defined by

Oy, &= (l""b‘)o.. (17.25)
By (17.1), the quantity b, can be expressed as
b, = J' f [(@ > Q.9 dQ, (17.26)

and is consequently known as the mean cosine of the scattering angle.

On comparing (17.24), 17.25), and (5.18b), one ocan say that for the
case [1—c| <1 the effect of anisotropic scattering is equivalent to a
relative reduction of the scattering cross-section by an amount equal
to the mean cosine of the scattering angle.}

17.3.3. The case where ¢ is not close to unity

If 1—c is small, but not negligibly small, the formula (17.21) can be
improved by including terms up to the order of 1—¢, but not those of
order (1—c)?, or in general by including terms up to order (1—c)*, where
n 2 1. For larger values of |1—¢|, L can be determined directly from
(17.20), if (17.8) holds and ¢ is fairly small. The integrals in (17.20) are
elementary, and the resulting transcendental equation for L can be
solved numerically. '

If¢in (17.8) is rather large, or if (17.8) cannot be used for any finite ¢,
there is no advantage in reducing (17.18) to (17.20), and the former
should be treated as an integral equation and solved by an approximate
method. The most frequently used method for this purpose is that of
discrete ordinates, which we shall discuss in section 17.5.3 below. Both
the variational method (Chapter XV) and the iteration method (Chapter
XVI) are also suitable for use with (17.18). Kusder (unpublished) has
used Fredholm series to solve (17.18) for some cases, but this method is
not generally profitable. :

t The importance of the transport mean free path and oross-section lies in the fact
that experimentally it is often easier to determine Iy than I, and b, themselves. It has
been suggested that the case of anisotropio scattering might be approximately treated

by replacing I, by I, and assuming isotropic scattering; this is sometimes called the
transport approzimation. It would be exact if (S’ - §2) were of the form

J(8Y — K) = (1/4m)[(1—by) + 4nb, 3(82.Q'—1)],

ie.if by = b, forn > 1. However, the approximation leads in general to rather poor
results, as we might expect,

3505.90 B
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17.3.4. The number of roots of the equation for the diffusion length

Hitherto we have discussed the determination of a particular eigen-
value of (17.18), and of & particular root of (17.20). The question arises
whether this root is unique. If a particular value of L satisfies (17.20),
then so does — L, so that we are really concerned with pairs of roots.
Further, as has been remarked in § 2.3.3, only those solutions are
physically permissible for which (r, Q) does not increase faster than
¢4 ag |r| - co. Hence, for physically permissible solutions of the form
(17.17), l/L must lie in the strip —1 < re(l/L) < 1. However, all the
integrals in (17.20) converge in the complex L-plane cut along the real
axis from L = —! to L = l. It is therefore reasonable to investigate
the number of pairs of roots in the cut L-plane. In tho case of isotropic
scattering, the equation (17.20) becomes

c dp
1-3 [ /) A

and we have seen in § 5.1 that this equation has just one pair of roots. In
the case of anisotropic scattering this is no longer necessarily true;
examples have been constructed in which f(’ —» ) is non-negative
and linear in . ', but ¢ is so large that b, can be found such that (17.20)
has two pairs of roots in the cut plane. Further, for any ¢, if¢in (17.8) is
large enough, b,, b,,..., b, can be chosen so that (17.20) has any prescribed
number k of pairs of roots (k > 1), though f(Q’ - ) remains non-nega-
tive (Davieon (59)). However, these situations have not yet been
met with in practical applications; all practical problems hitherto
considered bave been such that (17.20) has just one pair of roots, as in
the case of isotropic scattering. We summarize below the available
information on this topic:

When all the b, (n > 1) are negligibly small, the situation is identical
with isotropic scattering. Asthe b, increase, a point is reached when two-
more roots appear at the ends of the ocut, i.e. at L = 4-I, and begin to
move away from the cut along the real axis. When the b, increase
further, two more roots appear at the ends of the cut, and so on. However,
unless ¢ is very large, all these extra roots are close to the endsof the cut:
if we call the roots of (17.20) 3-L, - L,, ete., with 1/ L2 < 1/L} < 1/LE,
etc., then only e%L can vary reasonably slowly, while ¢#/Z» for m > 1
increases, for x — 00, almost as fast as e*®, Thus, as we shall see later, the
extra roots are unimportant, even if they exist.

If the equation (17.20) has only two roots, then, by taking an arbitrary
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superposition of plane waves of the type (17.17) and determining the
corresponding flux, we can readily see that the flux will be a solution,
regular in all space, of

(V2—1/L3)p(r) = 0, (17.27)
just as in the case of isotropic scattering. If there are two pairs of roots,
this equation hecomes

(V2—1/L3)(V2—-1/L?)p(r) = 0, (17.27')
and so on.

17.4. Other exact solutions

17.4.1. An infinite medium containing sources

The exact solutions have been found (sce Chapters V and VI) for tho
case of isotropic scattering in an infinite medium containing sources and
in a semi-infinite medium. We now consider the corresponding prob-
lems for anisotropic scattering. If (17.8) does not hold; then the exact
solution is not known even for an infinite source-free medium, so that
we shall attempt to generalize the results of Chapters V and VI only
to the cases where (17.8) holds. Further, we shall only outline the
procedure involved, since the multiplicity of parameters makes it
impracticable to write out the complete solution.

We first take the case of an isotropio point source in an infinite aniso-
tropically scattering medium. Here the integral equation derived in
§17.2 canbe used. It can be assumed without loss of generality that there
is no supply of neutrons from infinity. The problem is therefore spheric-
ally symmetric, and all moments of y(r, x) other than Yo(r) vanish at
r = 0, at least 8o far as neutrons that have been scattered are concerned.
The contribution due to neutrons coming directly from the sources
should, of course, be included if all neutrons are considered. This
contribution to any i,(r) is, however, simply se~"%/r3, where &-is the
number of neutrons emitted by the source in unit time and solid angle.
Thus the determination of the surface terms due to a small sphere around
r = 0 offers no difficulty. The outer surface of the system is at infinity,
and the term due to this vanishes. Thus, in the case where, for instance,
J (& — Q) is linear in Q.L’, extending the definition of p(r)tor < 0 by
putting p(—r) = p(r), we obtain

i) = & [ r'p(r')[El("_“,"')+3bl(1—c)Es("‘,"')]dr'+

+.g[f%""_ g%‘-‘-:E,(I—;—l)signr]. (17.28)
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Similarly, we can obtain the equation [(17.28")] for rp(r) when f (Q'->)
' takes the more general form (17.8), and these equations can then be
. solved by the Fourier transform method, as in § 5.3. If, as is normally
* the case, (17.20) has only one pair of roots, the solution of (17.28") will be

" of the form p(r) = (A/r)e—rL+O(e—rR), (17.29)

~ where the first term represents p,,(r) and the second p,,(r). If (17.20) has
two pairs of roots, say, then (17.29) will be replaced by
p(r) = (A[r)e~"iE4 (A, fr)e=rEst-Ole~rh). (17.29)
* In this case the first two terms of (17.29') may be regarded as p,,(r) and
. the third as p.(r), so that p,.(r) now satisfies (17.27), while p,,(r) is still
of the order of e, However, in view of what we have said about the
. values of L,, L,, etc., at the end of §17.3.4, it is more natural to regard
. only the first term in (17.29) as p,,(r). In this case, p,,(r) still satisfies
(17.27), but p,(r) is now of the order of e+ rather than e-"%,
The solution of the problem of an anisotropic source in an infinite
~ anisotropically scattering medium can be reduced by using (5.30) and
the method of § 5.4 to that of a spherically symmetric problem, which can
be solved as for an isotropic point source. The solution for a line, surface,
~ ordistributed source can be obtained by superposition, and p(r) can again
be separated into p,(r) and Pu(’)

17.4.2. An infinite aource-free half-space

Suppose now that the medium ocoupies the half-space z > 0, with
z == 0 a free surface, there being no sources in the medium; that is, we
have Milne’s problem for anisotropic scattering. In this case the surface
values of the higher moments i,(0), ,(0),..., ,(0) are no longer elemen-
tary, but represent ¢ additional constants which have to be determined
when equation (17.15") is solved.

A possible procedure for this purpose has been developed by Tait
(unpublished); it consists of an adaptation of the Wiener-Hopf method.
We extend the definition of p(z) to < 0 by regarding the half-space
2 < 0 as filled with purely absorbing matter (¢ = 0) of the same mean
free path as that in 2 > 0. Let F+(p) and F—(p) be the Fourier trans-

forms of p(z) forz > 0and z < Orespectively, as defined in§ 6.1, Taking
the Fourier transform of (17.156"), we have

F-(p)+F+p) = F +(P){(le"l+zap_a+ +Zm1p"”-1)ta,n"lpl+

+(Byp~2 ...+ Byp-¥)}+
+ z ¥,(0) X an expression analogous to { }, (17.30)
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where 4,,..., B,,... are certain coefficients depending on by, b,,..., 5. Th
calculation of these coefficients is simplified if, instead of eliminatin
Yn(x') from( 17.14") and then taking the Fourier transform, we do th
latter first and then eliminate the transforms of the ¥a(2’), because the
we do not need to find the coefficients in (17.15"),

We now introduce two auxiliary functions H+(p) and H~(p), defined a
follows: H+(p)is the coefficient of tan—1pl on the right of equation (17.30
and H-(p) is defined by .

H~(p)+H+(p)
=H +(p){(pr"+---+Zu+1p"‘")tan"pl+(B.p"+---+3up")}

: (17.3]
evidently H~(p) is expreasible directly in terms of F'-(p), the constant
¥,(0), and known functions. The equation (17.31) can be solved by th
usual Wiener-Hopf method (see § 6.1); we find

. HH(p) = C(p)w(p),

where C(p) is a polynomial containing ¢--1 constants C,,G,,...,C,,,
say, and w(p) can be found by means of the Cauchy integral. We sti:
have to determine the 2¢4-1 constants y,(0),..., #(0), Cy,...,Cpyy. Le
Py Pas-+» Py be the roots of A, p-1-+-...4 Ay, p~¥-1 = 0in the upper hali
planeimp > 0. F+(p)is regular at these roots, and so the expression fo
Ht(p,) (n = 1,2,...,t) will not involve F+(p,) and will be equal to .
certain linear combination of the ¢,.(0). This gives ¢ linear equation
between the constants to be determined. Another ¢ linear equations ar
obtained from H-(—p,), and a normalization condition completes th
“number needed to determine all the constants.

One of the earliest applications of this method was to the case wher
f(R' — Q) is linear in Q.2’. We quote the value obtained for th
extrapolated end-point z,, defined in (6.23), when 1—g¢ is small (Daviso
(10); Marshak (37)):

0:7104 l—c¢ (1—c)*
c(1—b,) ¢(1—b (1=5,)%

Most other calculations have dealt with some particular problem, in viex
of the many parameters involved. Tait (47) has considered the albed:
problem for the neutron energy flux in hydrogen, using the constan
cross-section approximation and terminating (17.1) after five terms

i.e. using (17.8) with ¢ = 4. We shall refer presently to some qualitative
results of Tait’s calculations.

2o/l =

)[0-508b1—0-1566§]+0[ ] (17.32
1
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The chief limitation of the Wiener-Hopf method applied to aniso-
tropic scattering lies in the awkwardness of the integrals that must be
evaluated, which compels a great deal of numerical work. If an answer

~ of a given accuracy is required, it is usually better to use a numerical
method (see the following section).

17.5. Approximate methods
 17.5.1. The diffusion approzimation and the Serber-Wilson method
All the approximate methods discussed earlier in this book for the
' case of isotropic scattering can be extended to the case of anisotropic
. scattering, though their relative advantages and disadvantages may be
. somewhat different in the latter case. The logical basis of the diffusion
' approximation is as before (sce §§17.3and 17.4.1). However, the informa-
. tion available regarding the best boundary conditions to be imposed in
solving (17.27) is much more restricted than in the case of isotropic
. scattering. In particular, the connexion between the solutions of the
" plane and spherical problems (see §8.2) no longer holds, and the value
- of the extrapolated end-point determined for the plane case is no longer

necessarily applicable to other geometries. In fact, a comparison with
T other methods indicates that such application may nowlead to a consider-
+ able error, and this is a serious limitation of the diffusion approximation
. for anisotropic scattering.
In the Serber-Wilson method (see § 9.1), the boundary conditions are
: replaced by certain integral conditions, and the disadvantage just
mentioned does not apply. Of course, the method is applicable only to
spherically symmetrio systems, as in the case of isotropic scattering. To
formulate the integral conditions in question, the integral equation for
" p(r) need be applied only at the centre of the system, and this makes it -
. possible to rewrite it in a much simpler form, and to dispense with the
condition that the mean free path is constant throughout the system.
. For instance, if the system consists of a core of radius g in an infinite
reflector, with f(Q’ — ) linear in £.Q’ for both media, while the
values of /, ¢, and b, for the core and the reflector are denoted by the
suffixes 1 and 2 respectively, the equation (17.13) at r = 0 gives

pO) = 4mii0, Q) = 2 f [plr)—3byyj(r)]e—™ dr +
[}

+ 5t f [p(r)—3byy j(r)Je~v-o% dr, (17.33)
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_ while the equation div j(r) = (¢—1)p(r)/! reduces in the case of spherical
symmetry to d c—1
0] = S rte).

Thus, eliminating j(r) from (17.33), we get

p(0) = —lif [ (r)+3b“(l—c‘) '20(r") Jr'] ehdr +
o o ,

+_ e-oh f [ ) — 3'11_!.(_1.&) '2(r') dr']e—<r-a>ﬂ-dr; (17.34)

[ 4

since p(r) is here the spherically symmetric solution of (17.27), the inner
integrals f 7'%p(r') dr’ are elementary. Starting with (17.34), we can
proceed as in the case of isotropio scattering. The same method is applic-
able to systems with & larger number of layersand f (' - Q) of the more
general form (17.8).

17.5.2. The spherical harmonics method

One of the most powerful methods for dealing with the case of aniso-
tropioc scattering is the spherical harmonics method. Here the procedure
developed for the case of isotropic scattering can be applied immediately.
The equation (10.1) for the plane case is now, of course, replaced by (17.3),
so that the equations (10.4) become

(0 1 (@) -+ 1y () +(2n+ ni= "'/’n(m) =0, 1(17.35)
with similar alterations in the equations for other geometries. For the
most general geometry, the equation (12.11) is now replaced by

divugrad, ¥, + 21

[1—cb, ]+
+[(2n—1)U.grad, ¥, ,— U?divygrad, ¥, ;] = 0. (17.35")
The functions @,(v) = G,(v, ¢) are consequently replaced by
G(v) = Qv ¢, by, by,...)
defined by the recurrenoce relation
(n-+1)Gr () +H{(2n+ 1)V} (1 —cb,)GR(v) +nG3 4 () = O
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. and G3(v) = 1. The zeros v, of G%.,(v) (where N is the order of the
- approximation) and the corresponding values of G%(v,) must, of course,
. be worked out afresh for each set of ¢, by, b,,..., since no tabulation of
G3(v) exists. However, the numerical work involved is not excessive,
while the general properties of the ¥; can be analysed as in § 10.2.

The boundary conditions in the spherical harmonics method are either
. Purely local or are obtained by eliminating the solution for a black
- medium, and are unaffected by the isotropy or otherwise of the scattering.
' If we work in the P, approximation, all b, for n > N are neglected,
and thus, unlees (17.8) holds with ¢ <{ N, there will be a distortion of the
scattering law. It was at one time thought that this made the spherical
* harmonics method inaccurate for the case ¢ > N. However, since the
higher moments are small, the corresponding values of b,, are unimpor-
tant, and the order of approximation used need not normally be much
higher than would be used in the case of isotropic soattering, even if the
b, thus neglected are by no means negligible a priors. This was confirmed,
for instance, by the work of Tait (47) on the neutron energy flux in
hydrogen, referred to in § 17.4.2. The calculations were originally done
by the Wiener-Hopf method, and then repeated, using the spherical
harmonics method in the P, and P, approximations. The P, resulta
were practically indistinguishable from the Wiener—Hopf results, which
is not surprising since they involved no distortion of the scattering law,
but the P, results also were in remarkable agreement with the Wiener—
Hopf results, although the distortion of f (R’ -> Q) in this case was drastic,
|i#1*+ 1 being approximated by }-+ju.

The above remarks refer, of course, only to the conventional form of
the spherical harmonics method. The extension of Yvon’s modification
to anisotropic scattering is referred to on p. 173.

17.5.3. The discrete ordinates method

The discrete ordinates method has hitherto been restricted to problems
with plane symmetry, but for these its extension to anisotropic scattering
isstraightforward. We start again with the equation (17.10) and approxi-

I @ HHEN = Cl) S af o), (17.36)

where f;; = f(u;— ) and Y (x) = ¥(z, ;). The solution of the equa-
tions (17.36) has, of course, the same form as for isotropic scattering

(13.3). The permissible values of v, in (13.3) will obviously be given by
the roots of the determinantal equation

leasfey—34(1 7, p0)| = 0, (17.37)
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which follows at once from the extension of (13.4) to anisotropic scatter-
ing. If (17.8) holds with ¢ much smaller than the number of ordinates
used in (13.1), the equation (17.37) can be put into & simple form similar
to (13.6). If, for instance, f(Q’ - L) is linear in Q.R’, then as in the
derivation of (17.20) we obtain

l_gz 9 _de agpy

244 14y, 2 14y
¢ ad __3be a;pd
2 r; 147,14 2 n 14y,

etc. However, unless ¢ in (17.8) is small compared with the number of
ordinates used, there is no advantage in transforming (17.37) to the
form (17.38). .

Apart from the derivation of (17.38), no use has been made of the
assumption that (17.8) holds. This suggests that, when f(u’ -> ) varies
rapidly or irregularly, so that the convergence of (17.1) is poor, the
discrete ordinates method may be more useful than the spherical
harmonics method. In such cases, however, it is necessary to be careful
in the choice of summation formula (13.1). The choice advocated for
the case of isotropic scattering (Gauss for critical-size problems and
double-Gauss for the angular distribution emerging—see § 13.6), pre-
supposes that the integrand is smooth, i.e. that (17.8) holds. Iff(u’— u)
i3 irregular, one should use a type of summation formula given by
Biickner (7, pp. 111 ff.). If, for instance, f (u’ > u) has the form (17.12),
then 2% (u" — p)/ou'? is discontinuous, and is infinite for u’ = = (1—pu2),
In this case, according to Biickner, little can be gained by using a summa-
tion formula more complex than

=0, (17.38)

IN=1

j f(z) de = %,_ZNf(ﬁliv'l). (17.39)

Biickner’s conclusions, however, were based on tentative, not rigorous,
arguments.

Another more important advantage of the discrete ordinates method
lies in the simplicity of the result for certain problems. For instance,
aince the boundary conditions at the free surface are the same as for
isotropic scattering, the angular distribution of neutrons emerging from
a half-space which is infinite and homogeneous is still given by the
formula (13.19), as for isotropic scattering. The only difference is that
the values of y, are different. Further, all the zeros and poles of (13.19)
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lie to the right of » = 0, so that the formula (13.19) is applicable for the
emerging neutrons (1 < 0), whether or not u is one of the ordinates used
in the summation. Except in the case of isotropic scattering, it is much
easier to achieve & given accuracy by increasing the number of ordinates
in (13.19) than by increasing the accuracy with which the integrals of
the Wiener-Hopf method are evaluated.



PART II1

ENERGY-DEPENDENT PROBLEMS WITH
SPECTRUM REGENERATION

XVIII

A GENERAL SURVEY OF ENERGY-DEPENDENT
PROBLEMS

18.1. Slowing-down and spectrum-regenerating media

WEe now turn to problems where the assumptions of the constant cross-
section approximation are no longer valid. That is, either the variation
of the cross-sections in question with energy has to be taken into account,
or the neutron energy spectrum is of interest in itself.

It is evident that media containing thermally fissile material behave
in a way fundamentally different from those containing no fissile material.
In the former case, a neutron of any energy has a probability of causing
a fission and thus generating neutrons whose energies are at the top of
the range considered. There is therefore a certain regeneration of the
neutron spectrum, and we should expect the existence of some equili-
brium spectrum, and hence of a solution of (2.4'), for an infinite source-
free medium. If, however, fissile material is absent, a fast neutron will
ocertainly lose energy in a collision, and if fast neutrons exist in the
medium they must be supplied by sources, inside or outside the medium.
That is, the equation (2.4’) has no solution in this kind of infinite source-
free medium.

It is convenient to express this distinction more mathematically. Any
solution for an infinite source-free medium can be expressed as a super-
position of plane waves, i.e. of solutions of the form

N(r,vQ) = A(v, u)evL, (18.1)

where L is some suitably chosen parameter of the dimensions of a length;
according to § 2.3.3, L should satisfy the inequality

—1/maxl(v) <re(l/L) < 1/maxly,(v). (18.2)
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Bubstituting (18.1) into (2.4’), we readily obtain

(1+,¢"%))04(v.“) = Ifv) J' f f %%2 FWR > v @) AW, w') dv'dQY’.
(18.3)

If scattering is isotropic in the L system, i.e. if f (v'Q’ - v&) has the form
(2.23), A(v, u) should clearly be of the form

A, p) = ’_(03’) [1 +“_£I‘:’_’]"B(v). (18.4)

Substituting this into (18.3) and effecting the integration over angles,
we find

B() = f B(')o(v')f (' »v)lg’—;log% d.  (18.3)
Thus, if (2.4’) has a solution in an infinite source-free medium, then there
is & value of L satisfying (18.2) such that (18.3) (or (18.3') if (2.23) holds)
has a solution.

We shall refer to media for which (18.3) (or (18.3") if appropriate) has
a solution for L satisfying (18.2) as spectrum-regenerating media. If,
on the other hand, (18.3) or (18.3’) has no solution when L satisfies (18.2),
we shall speak of slowing-down media.,

Spectrum-regenerating media can be further classified according to
the permissible eigenvalues L. If at least one of these eigenvalues is
purely imaginary, the equation (2.4') can have a periodic solution in an
infinite source-free medium. In a periodic solution, multiplication
predominates over capture for every r. We shall therefore call such
media multiplying media. If no eigenvalue L is purely imaginary, then
a solution of (2.4’) in an infinite source-free medium presupposes a supply

of neutrons from infinity, and in this case we shall speak of a capturing
medium.

18.2. Media which do not degrade the spectrum

The above definition of spectrum-regenerating media in terms of the
properties of equation (18.3) is rather inexact in one respect. If thereisa
medium containing no fissile material, but containing elastically scatter-
ing infinitely heavy nuclei, their contribution to f (v’Q’ - v€2) from elastic
scattering will be proportional to 8(v'—v) (see (2.18)). With fissile
material absent and none of the nuclei infinitely heavy, the equation
(18.3) is of the Volterra type, as may be seen from the discussion of
J('R —> o) in §2.2. However, in the case mentioned just now,
although the limite of integration are of the Volterra type, the usual
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conditions on the behaviour of the kernel for ¥ = v are not satisfled; in
fact, unlike a Volterra equation, the equation (18.3) may have a solution
for some ¢(v) and L. The medium in question may therefore be spectrums-
regenerating in the sonse of § 18.1, although there is no regeneration in the
sense of neutrons gaining energy. The term ‘not degrading the spectrum
indefinitely’ would therefore have been more appropriate. However, it
is usually a matter of indifference mathematically whether the medium
isactually spectrum-regenerating, provided that it is non-multiplying, or
merely does not degrade the spectrum indefinitely. We shall therefore
use the former term for simplicity, in accordance with the properties of
(18.3) rather than with the physioal situation.

The above example imagined the presence of infinitely heavy nuolei
in the medium. Although all actual nuclei have finite masses, the heavier
ones may often be rogarded as infinitely heavy, even when the medium is
slowing-down and not spectrum-regenerating. Suppose, for instance,
that we have a finite body composed of slowing-down material and
irradiated by neutrons from outside, and that we require the neutron
distribution close to the exposed surfaces. If the body contains some
fairly heavy nuclei which scatter elastically in the C system, the neutron
energy loss in the L system in each collision with these nuclei will be very
small (cf. (2.11)), and many such collisions are needed to reduce the
energy of a neutron appreciably. If, therefore, the number of neutrons
in a given region which have undergone this large number of collisions
is small, the neutron distribution in this region can be determined by
neglecting the energy loss in such collisions, i.e. by treating the masses
of the heavy nuclei ag infinite. This may amount, from what we have said
earlier in this section, to replacing a slowing-down medium by one which
does not degrade the spectrum indefinitely, or, as we have agreed to call
it, a spectrum-regenerating medium,

These remarks do not envisage any approximation in (18.3). We refer
to an approximation in (2.4') which is justified near sources, boundaries,

eto., and to the properties of the modified equation (18.3) derived from
this approximate form of (2.4').

18.3. Spectrum-regeneration problems and slowing-down
problems
The classification of media introduced in §18.1 and discussed in § 18.2
leads directly to a classification of the problems that may be encountered.
For, although the system concerned may contain both spectrum-
regenerating and slowing-down media, the neutron distribution required
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isalways that in one or other type of medium. We shall speak of spectrum-
regeneration problems and slowing-down problems, as the case may be.

In the constant cross-section approximation, the equation correspond-
ing to (18.3) (or to (18.3')) always has a solution. Spectrum-regeneration
problems are therefore more akin to those discussed earlier in this book.
For this reason we shall first consider spectrum-regeneration problems,
leaving the discussion of slowing-down problems until Part IV, We shall
also postpone until Part IV (§ 23.5) a certain method of dealing with
spectrum-regeneration problems which depends on a preliminary solu-
tion of a slowing-down problem.

18.4. The main methods of solution of spectrum-regeneration
problems

There are three possible approaches to the solution of spectrum-
regeneration problems. These are:

(1) to subdivide the energy range concerned into a finite number of
sub-ranges, within each of which the relevant cross-sections are
approximately constant, and to treat the neutrons in each sub-
range in the same manner as in the constant cross-section approxi-
mation;

(2) to select beforehand a set of simple orthogonal functions of the
energy alone, such as a set of weighted orthogonal polynomials in
v, and to expand the neutron density N(r,vS) in terms of these,
subsequently working with the coefficients in this expansion;

(3) to reduce the problem to one with a solution in two stages, the first
being the solution of a set of one-velocity problems, and the second
that of an equation involving only the energy.

Which of these approaches is used depends, of course, on the nature
of the problem, We shall discuss them in turn in the next three chapters.



XIX
MULTI-GROUP THEORY

19.1. A general survey

THE first of the three approaches described above is called two-group

- ~theory, three-group theory, ete., depending on the number of energy sub-
ranges used. The neutrons of the ith energy sub-range are called the ith
group. If the total number of groups is unimportant, we shall speak of
multi-group theory. This term is sometimes used to denote any caloulation
in which the variation of the cross-sections with energy is taken into
account, but we shall not use it in that sense.

The division of the energy range into sub-ranges arises in some
problems quite naturally. For example, neutrons are often divided into
thermal and fast groups, because for many substances the cross-sections
for thermal neutrons are markedly different from those for fast neutrons.
Similarly, where a threshold process is involved, which cannot take place
below a given energy, the threshold energy often forms a natural division
between two groups. However, if many groups are used, it is better to
take them from the curves showing the variation of cross-sections with
energy, without requiring a simple physical interpretation of the groups.

In discussing multi-group theory, we shall assume scattering isotropic
in the L system, i.e. we assume in § 19.2 to 19.6 that f(v'Q’ - v) in
(2.4') has the form (1/4m)f (v’ - v) (see (2.23)). In§ 19.7 we shall make
some remarks about the more general case where (2.23) is not assumed.

19.2. The assumptions and basic equations of multi-group
theory

19.2.1. The formal derivation of the equations

As we have already indicated, in using m-group theory it is assumed
that the entire energy range, and therefore the entire velocity range, can
be divided into m intervals such that, if v is the ith interval,

hot(v) =1, e(v)=¢;, for v, <v <y, (19.1)

where [; and ¢, are some constants, while v,_, and v, are the lower and
upper limits of the values of v in the ith group. In other words, the energy
dependence of the total mean free path, and of the mean number of
secondaries per collision, is approximated by means of step functions.
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The assumptions (19.1), however, are not sufficient, and some further
. assumption must be made before the Boltzmann equation (2.4') takes a
tractable form. This may be done in several ways. The simplest

- mathematically, though not very convincing physically, is to postulate
that each of the integrals

j‘f(v’ ->v) dv

Yi-1

can be approximated by a step function similar to (19.1), i.e. that

“
ff(v' +v)dv=f_, for v, <v' < v, (19.2)
L

- where f;_,; are some constants. By the normalization condition (2.24),
these constants must satisfy the relation

2hm=1 (19.3)

If we assume (19.2) to hold, then, on integrating (2.4’) over the ith
group of v and putting for brevity

L]

d(r, Q) = [ oN(r,vQ) dv

o . (19.4)
8r, Q) = [ 8(r,vR)dv

L2

we obtain, as in § 4.1,

Q.grady,r, 9>+’ﬁ“—§——;“’ =5 ‘—’f‘;{%‘ [[ .20 +545. 2.

(19.5)

If the assumptions underlying equation (2.30) also hold, i.e. if the sources
are isotropic and we consider a single non-re-entrant homogeneous body,
then by putting

v

pur) = [ on(r,v) do

V-1

and proceeding as in the derivation of (19.5), we obtain from (2.30)

ey =g [ [ [ eZeperrfansier+ 3 St
(19.6)
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while the equation (2.32) givesv, in an obvious notation,

and so on.

19.2.2. The validity of the multi-group approximation Jfor an infinite

source-free medium

The range of validity of the equations (19.5), eto., is not reflected in the
above derivation, since the latter is based on the assumption (19,2), which
is often open to objection. The most probable result of a oollision is
usually elastic scattering, and if a neutron is scattered elastioally (in the
Csystem) by a nucleus of magg M, its final velocity v will lie in the interval
[(M—1)) 2+ D <o <y (see (2.16)). Thus the actual value of the
integral o '

f S —>v)dv
4y
for v’ in the interval v <V <y, willbe by no means constant; it will
be quite large for v <V <[(MA1)/(M —1)}v, and noticeably smaller
for [(M+1)/(M =1, < < Y441 In fact, if there are no nuclei of
mass less than M, and inelastic scattering is absent, the integral vanishes
in the latter sub-interval.

This objection usually renders the equations (19.5), eto,, inapplicable
in slowing-down problems, but for spectrum-regeneration problems these
equations can be derived from other assumptions, provided that, Ji 18
suitably redefined. The assumption (19.1) is, of course, retained.

We first investigate under what conditions, and with what choice of
Ji-1, the equations (19.5), ete., lead to the correct result (i.e. the correct
solution of (2.4")) for an infinite source-free medium, nothing being
assumed about the form of J (¥ = v). This has partly been done in §18.1.
Let us consider the solution of (2.4") corresponding to a particular
eigenvalue, assumed non-degenerate. Using the assumption (2.23),

(18.1), (18.4) and (19.1), and combining the contributions of all plane
waves for the same value of L, we obtain

N(r,vQ) = l—;B(v) f f G(,) IT I‘ISI'?.. sz"e"-"'/*" dQ, forv, , <v< v,
(19.8)

where Q, characterizes the orientation of the various plane waves, and
Q(R,) is an arbitrary function depending on the superposition of these

850599 8
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waves. The equation (18.3) reduces, on the assumptions (19.1), to

Bv) = z log _._J J’ B(')f (v’ - v) dv'. (19.9)
Putting now o w—'
B, = rB(v) dv
o e . (19.10)
and f,_,‘=—;-, f dv Jldv’B(v’)f(v’—»v)
and using wero e

;fH——J?’dv’B(v)J‘f(v —>v)dv=£’==l

Vi1

in agreement with (19.3), we integrate (19.9) over the ith interval of v,

obtaining B, = .clb log L +l
2L
From the definition (19.4), the expression for J,(r, ) corresponding to
(19.8) is obtained by replacing B(v)/v in the latter formula by B,.
Substituting these ¢,(r, ) into (19.5), we arrive at an equation for the
B, which is identical with (19.11), since we are at present considering the
source-free case. Thus, for an infinite source-free medium satisfying
(19.1) and (2.23), the y(r, Q) defined by (19.4) in fact satisfy (19.5),
regardless of any assumptions about f (v — v), provided that only solu-

tions for one particular L are considered, and that the f; ; are chosen in
acoordance with (19.10).

7 i B,. (19.11)

- 19.2.3. The validity of the multi-group approximation for finite systems.
General conclusions
Suppose we have a critical system consisting of a slightly multiplying
core surrounded by capturing or slowing-down material; the fact that
the core is multiplying means that the corresponding equation (18.3’) has
at least one pair of purely imaginary eigenvalues
L = +ifx. (19.12)
The term slighily multiplying means that (i) there are no purely imaginary
roots other than (19.12), (ii) « is very small, i.e.
)<Ll }
and x|L|<1)
where L’ is any eigenvalue, other than L, of (18.3") for the core.

(19.13)
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Let the value of f(v' - v) for the sth medium be Sy’ - v), and let
B(v) be the solution of (18.3’) for the core material, belonging to the
eigenvalue (19.12). We define f, j—4 DY

v

f,J_,,=B% J' dv f dv' B )f,(v" - v), (10.10')

- %1

where B, is given by the first of (19.10). We assume that none of the
Julv' - v) differs greatly from the delta function 3(v'—v):

St > v) =2 (v’ —v), (19.14)

80 that none of the f,, ,, differs greatly from 3.
We seek a solution of (2.4) in the form

N(r,vQ) = {B(v)fvBJ(r,RQ)+SN(r,vQ) for V<o <y,

(19.15)
where y,(r, Q) are the solutions of (19.5), and we inquire whether
8N (r, vR) in this formula can be regarded as a negligibly small correction.

Let us first consider the situation in the interior of the core. By analogy
with the conclusions of the constant cross-section approximation, it is
seen that the solution in the core can be regarded as a superposition of
infinite-medium solutions for the various eigenvalues L and of the
contributions due to boundary effects. At the boundary of the core the
contributions from the different types of term should be roughly compar-
able. As we move into the core, the contribution from the infinite-
medium solution for the eigenvalue (19.12) should increase, while the
contributions of the other terms decrease as exp[—d|re(1/L’)]] and
exp[ —d/max I(v)] respectively, where d is the distance from the core
boundary. Since the system is assumed to be critical or nearly so, the
geometrical dimensions will be of the order of 1/x. The inequalities
(19.13) then imply that in the interior of the core all terms except the
infinite-medium solution for the eigenvalue (19.12) are quite negligible.
The latter térm, by the arguments of § 19.2.2, is given just by the first
term of (19.15). Thus 3N in (19.15) is completely negligible in the
interior of the core.

We now estimate the value of 8N in the rest of the system. Starting
from the interior of the core and moving outwards, the various
py(r) = f f P(r, 2) dQ will no longer remain in the same ratio as we
approach the boundary and cross it into the surrounding medium.



. 260 MULTI-GROUP THEORY XIX, §2

Consequently, if we substitute the first term of (19.15) for N(r, vQ) in
(2.4'), the right side of the latter will not be exactly proportional to B(v),
and so the first term of (19.15) alone is no longer an exact solution of
(2.4’). However, if

c ¢
Z;—,’%’J‘ B >0 [[pr@de ot

were proportional to B(v) within each interval (the constant of propor-
- tionality need not be the same for every interval), then on dividing (2.4')
by B(v)/vB; for v, ;, < v < v, we should have (19.5); that is, the first
term of (19.15) would still be a solution of (2.4'). In other words, the
deviation of (19.16) from strict proportionality to B(v) in each interval
is the only reason for the appearance of 3N in (19.15). However, since
+ J(v' - v) is assumed not to differ greatly from 8(v'—v), the deviations of
(19.16) from proportionality to B(v) in each interval should be small.
The free term of the inhomogeneous equation for SN (r, v<) is therefore
small everywhere, and though 5N(r,vQ2) may increase as we move
outwards, it will do so very slowly. It is thus reasonable to expect that
SN will not become comparable with the first term in (19.15) until
distances from the core are reached where the total neutron population
is too small to affect noticeably the solution in the core.

Thus, though (19.5) is not strictly equivalent to (2.4) with I(v) and
¢(v) given by (19.1), it is a good first approximation under the conditions
imposed (see (19.13), eto.).

We can express somewhat differently the conclusion that under these
conditions 3N remains small beyond the point where N(r,vS2) ceases
to be represented by the infinite-medium solution for the eigenvalue
(19.12). For it implies that the spectrum within each group remains
approximately independent of position, beyond the point where the
total spectrum ceases to be so.

It should be remarked that the assumption (19.14) was introduced
only to ensure this approximate conservation of the spectrum within
each group, i.e. to ensure the approximate proportionality of (19.16)
to B(v) within each interval. However, the assumption (19.14) is not
the only way of ensuring this property. For instance, instead of (19.14)
we could have assumed that

Jov' > 9) = 9,0 o BO)1+2) 47, 40s o' > v)
for v, <V <y, v, <v <y, (19.14)
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where fi(v' — v) satisfies the assumption (19.14), z is a small quantity,
and y,,,; and ¥,,., are constants such that Jov' - v) satisfies the
normalization condition (2.24). '

Similarly, if the spectrum of the neutrons in a group can be determined
from other considerations, as for thermal neutrons, no restriction need
be imposed on f,(+' - v) for v in this group.

Finally, if the assumption (19.2) holds for the neutrons in some groups,
and (19.14’) for the neutrons in the other groups, then the arguments of
§ 19.2.1 can be applied to the former and those of the present section
to the latter. The equations (19.5), eto., can thus be justified for all the
groups. This shows that for spectrum-regeneration problems multi-
group theory may be applicable under a variety of conditions.

1t sometimes happens that for one group neither of the assumptions
underlying (19.5) is satisfied, but that the only processes affecting the
neutrons in this group are slowing-down processes. In this case the
group concerned can be dealt with by solving a slowing-down problem
and using its'solution as the source term in the next group. We shall not
discuss this method until after the consideration of slowing-down
problems, in Chapter XXIII; at present we shall use only the simpler
form of multi-group theory expressed in the equations (19.5), (19.6),
ete.

If it is desired to use the formulae (19.10), (19.10’), ete., to evaluate the
constants f,_,;, B(v) must be known. The latter will be determined in
§ 22.2. Meanwhile, we shall regard the f4- 88 given numerically, which is
often the case.

19.2.4. The matriz form of the multi-group equations

Before discussing the solution of the equations (19.5), (19.8), eto., the
subject of their transcription may be considered. In order to simplify
the algebraic manipulation of these equations, it is often convenient to
introduce matrix notation. We shall use the m-dimensional column
vectorst {(r, 2), p(r), ete., with the components Pu(r, ), py(r), ete.,
respectively, and the diagonal matrices c, I, [-1, eto., with components
along the diagonal c,, ,, I;1, eto., respectively, and finally the matrix f
whose element in the jth column and ith row is S4~¢. In this notation,
with the usual rule of matrix multiplication, the equations (19.5), (19.6),

t Theso m-dimensional column and row vectors are denoted by bold-face italic or
Greek letters (with the exception of £2), while bold-face roman letters and  denote
physical ‘vectors. We denote by J, unless otherwise stated, a column vector whose
componenta are physical vectors.
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" (19.7), ete., can be rewritten}

Q. grad pir, R+, 2) = it [ [ bir, @) dr 4 5(r.2)
(19.5")
o) = [[[ 2 ,l.expt—x-lxr— r[fel-p(r') -+ 4mS(r"),
(10.6")
o) = & [ [ [zl exp(—I2ir—rhOE)+5@), (197)

and soon. In this notation, the kernel of the equation (19.7’) differs from
that of (19.6’) only by the order of the factors. Since f does not in general
commute with the other factors, the two kernels are not the same. Of
. oourse, all the diagonal matrices commute.

In the equation (19.68") and (19.7'), we have assumed that the body
concerned is single, homogeneous, and non-re-entrant. If this assump-
tion does not hold, the equations mentiog%d must be replaced by

p(r) = (1/4m) [ [ [ @V [ir—r"1Bexp[—t(r, r")] X

X [f(r")e(r )" )p(r') +4nS(r')]  (19.17)
and
Q(r) = (1/4m) [ [ [ {@V"/lr—r’ I(e)e(e)1-(r)exp — t(r, F)]Q (") + S(r),
(19.18)
where {(r, r') is a diagonal matrix with elements r,(r, r’); see (2.31’) and
(2.38).
~ The corresponding homogeneous equations under variable composi-
tion are obtained by omitting the source term and replacing 1/4= by
y/4m. These equations we shall call (19.5%), (19.17°), and (19.18’).
19.2.5. The adjoint equations
In order to apply matrix notation conveniently to the adjoint equa-
tions, the solutions of the latter should be represented as row vectors
rather than column vectors. By the rules of matrix multiplication, a
row vector should always be placed in front of the matrix operating on it,
and the product of a row and a column vector is understood as a scalar
product. From the discussion of §§ 3.5 and 3.8, the equations adjoint to
(19.5") and (19.17’) (just defined) are then readily seen to be

—9.grad!(r, Q)+(r, D11 = (y/4m) [[ YH(r, &) dQ' fe1-t

(19.19)

$ Expressions of the form (a-+b), a being & number and b a matrix, should be under-
stood as a3+ b, J being the unit matrix.
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and

p'(r) = (y/4m) [ [ [ @V [Ir—r'1%pt(x"Yoxp[ —t(r, ) H(E)(O)1-1(r),
- (19.20)

with a similar equation for Qt(r), where p', Q*, and ! are row vectors.
The orthogonality relation (3.20) bocomes, with suitablo normalization,

.”J‘ aV p}(r)p r) = 8y, (19.21)

where p; and p} now denote eigenfunctions of (19.17’) and (19.20). On

using (3.26) and (3.27) together with (3.28), we obtain the following
relations between ! and p':

W) =1 J' ds o' (F+oR)e-Kew+om) (19.22)
0

and o'(r) = f J’ dQN(r, Q)fel-L (19.23)

19.3. Infinite and semi-infinite media

19.3.1. An infinite source-free medium

We now consider mothods of solution of the equations (19.5°), eto.
These equations are formally identical with the corresponding equations
in the constant cross-section approximation. The only difference is
that the coefficients are matrices and not ordinary numbers. It is there-
fore unnecessary to repeat the analysis given in earlier chapters; we shall
merely indicate the differences arising from the coefficients’ being
matrices. .

Let us first take problems for which an exact solution is available in
the constant cross-section approximation, beginning with the case of
an infinite source-free medium.

Proceeding as in § 5.1, we see that for an infinite source-free medium
the most general solution of (19.5%) is

r.Q,
] an,

4.2 =3 [ [ oo+ 2] " Bexy]
k (19.24)

where G(S2,) are arbitrary scalar functions of £,, the column vectors
B, are the suitably normalized solutions of the equations

L L+1
B, = fcl-1=klog =k L B,, (19.25)
k 2 CL—~1"
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and the L, are the solutions of the determinantal equation
L, L41
—fel 12 og 2Tt

'1 fel 5 log L-—Il 0, (19.26)
which arises from the condition that (19.25) is soluble. The solutions
of (19.26) appear, of course, in pairs, since that equation is unchanged
when L is replaced by — L. Since the logarithm in (19.25) and (19.26) is
the result of evaluating the integrals

1

[t e
-1 &

the principal value of the logarithm should always be used, and only
those roots of (19.26) are admissible which lic in the complox L-plane
out along the real axis from —max I to +-max,, maxy, being the largest
of the /.

Woe first consider the determination of the roots of (19.26) which are

large compared with all the L. In this case, it is convenient to rewrite
(19.26) in the form

!I[}Llog%_—t—:]~l— fel = 0.

If L is large compared with every /;, we can expand each element of this
determinant in powers of L-11, and the equation (19.26) then becomes

—fe—t %
ll fC 3L'I 45—.Lil v

It is seen immediately from an inspection of this equation that, if fc is
" mearly a unit matrix, i.e. if

= 0. (19.26')

1—fe = O(¢) (19.27)
where ¢ is small, then the various I3/ L* will also be of the order of €. Thus,
retaining in (19.26') only the leading terms, we can replace that equation
+ by 11—fe—(1/3L2)12| = o. (19.28)
The loft side of (19.28) is a polynomial of order 2m in 1 /L, and therefore
this equation has exactly as many pairs of roots 1/L = 4-1 /Ly, say, as
the number of groups used. Also, if (19.27) is well satisfied, all these 2m
. roots L = 4L, will be large compared with any of the I, and therefore
lie in the cut plane. Under the same conditions, there will be a root of
" (19.26’) near each root of (19.28), and therefore a root of (19.26). If

- (19.27) holds, there will thus be at least as many pairs of roots of (19.26) as
* the number of groups used.
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It can also be shown that under these conditions (19.26) cannot have
more than m pairs of roots. For if it had any roots other than those
associated with the roots of (19.28), the derivation of the latter equation
would be inapplicable to these roots, and they would therefore have to
be small, or comparable with some k. For such L, the terms which are
small in (19.26) and can be neglected in the first approximation would,
if (19.27) holds, be non-diagonal terms. That is, (19.26) could, so far as
the L comparable with the l; are concerned, be approximated by

= L., L+l
n (l—f‘_,‘c‘El—‘lOg Li-Z‘ = 0. (19.29)

=1

For f, .;c; = 14-O(e), each root of this equation is large compared with
the corresponding ;. That is, if (19.27) is satisfied, the roots of (19.20)
are large comparod with the l;, and eo (19.26) cannot have any roots in
the cut plane which are small, or comparable with the I, This proves
that, with the condition (19.27), any root of (19.26) is approximately
given by the corresponding root of (19.28).

It should be noticed that the degree of smallness of 1—f¢ required for
the above derivation depends on the spread in the values of the I,, The
greater this spread, the smaller must 1 ~—fc be before it is certain that the
roots of (19.28) are a good approximation to those of (19.26), or even that
the two equations have the same number of roots, ,

It may also be remarked that the equation (19.28) represents a direct
extension of the approximate formula (6.15a) for the diffusion length
in the constant cross-section approximation. This equation will be
encountered again in § 19.5.3.

If (19.27) is not satisfied, the number of pairs of roots of (19.26) in the
cut plane need no longer equal the number of groups. The change in
the number of roots may occur as follows: suppose all Ji~¢ vanish for
J > 1, 80 that (19.26) reduces to (19.29). Let 4 L, be the roots of the ith
factor in (19.29), and suppose that some of the f, ,,c, are noticeably less
than unity. For each such s, L, will be comparable with I,, and if the A
differ appreciably among themselves, it may happen that some L, are
smaller than the largest /,. These L, therefore lie on the out, and are not
permissible in the solution of (19.26). Of course, the assumption that
Ji»1=10 for j > i is made for simplicity, and the reduction in the
number of roots can occur when no J4—+4 vanishes.

These arguments suggest that, if (19.26) has m’ pairs of roots in the cut
Plane, then m' is bounded by

1<m <m, (19.30)
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where m is the number of groups used. The result (19.30) has been proved
- rigorously for two-group theory (Melvin, unpublished), by following the
~ change in arg F(L) as one goes round the cut, F(L) being the left side of
. (19.26). The proof is not difficult, since it is sufficient to keep track of the
. changes of quadrant of F(L), i.e. of the changes of sign of re F'(L) and
im F(L). The extension of this rigorous proof to a larger number of
. groups has not yet been attempted, however.
We have drawn attention to the possibility of situations where
" m’ < m (fewer pairs of roots than groups) because in these cases some
. difficulties are encountered in extending the diffusion approximation
and the Serber-Wilson method (see §19.4.3). ,
* The following remarks may be made regarding the general properties
of the solution in an infinite source-free medium. The neutron flux

associated with (19.24) is given, as is seen by integrating (19.24) over all
angles, by

p(r) = 3, 4Lulog B o), (19.31)
where $u(r) = 4m [[ GRulexplr. /L] d0
is an arbitrary solution of
‘ (1—LEViy(r) =0 (19.32)
regular in all space. J

The corresponding expression for the neutron current can be obtained
- a8 follows. Starting from the transport equation (19.5’) and proceeding
- a8 in the footnote to (8.14) we have

[[itr).aA = [fe—13=2 [ [ [ px) av.

* Denoting the kth term in (19.31) by p,(r) and using (19.32), we can rewrite
. the last expression as

JJ )08 = (1= [[[ 3 11 ¥0utr) a,
.‘ and hence, by Gauss’s theorem, since V2 = divgrad,
Jir) = (fe—=1)11 g L} grad p,(r), (19.33)

. which represents the natural extension of (8.14).

- These remarks also apply to the solution of the adjoint equation.

" Here the determinantal equation will differ from (19.26') only by the

- fact that the matrix f is replaced by its transpose. This obviously cannot
affect the value of the determinant. Thus the values of L, for the adjoint
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equation are the same as for the original equation, though the corre-
sponding row vectors B} need not be simply related to the column vectors

B,. The same will be true of the determinantal equations which we shall
encounter in § 19.5.

19.3.2. ‘Solutions’ which do not satisfy the conditions at infinity

In the constant cross-section approximation, it was unnecessary to
consider the infinite-medium solutions which do not satisfy the conditions
at infinity. However, the discussion preceding (19.30) suggests that in
multi-group theory this may be necessary. We therefore examine the
solutions in question. Let us first recall the derivation of the permissible
solutions given in the preceding section. For simplicity we consider
only the plane case, i.e. (r, ) = Y(z, u). The first stepin the derivation
was to take J(z, 1) in the form

Y(z, u) = A(p)exp(z/L),

and to substitute this into (19.5%), giving

(%-*—I'I)A(p.) = %cht-l J‘ f Ap')dQ'. (19.34)

The next step was to solve (19.34) for A(u), regarding ” A(p')dQ’
as known. If the solutions must satisfy the conditions at infinity,
L must lie in the cut plane, and then the only solution of (19.34) is

Alp) = (.L’f+1-1) ferr L f f Ay de, (19.35)

which, on integration over u, leads immediately to (19.25). However, if
the conditions at infinity can be violated, L need no longer lie in the cut
plane, but may be on the cut itself. In this case

A(u) = 8(u+ L1-}) X+ the right side of (19.35),  (19.36)

where X is an arbitrary constant column vector, is also a solution.

Integrating (19.36) over all angles and putting f f A(u)dQ = C, we
obtain L+1

- 2ns(L)X+;Llog(

)fcr-lc (19.37)

where s(L)is a diagonal matrix whose ith element is unity if —I, < L <1,
and zero otherwise. The equations (19.37) are the direct counterpart
of (19.25), as can be seen by multiplying them by fc[-! and putting
B = {cI-1C. However, whereas (19.25) formed a system of homogeneous
equations, (19.37) is a system of inhomogeneous equations with an
arbitrary (but adjustable) free term, and therefore always has a solu-
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tion.t Thatis, any value of L on the cut is permissible for solutions which
can violate the conditions at infinity, The expression (19.37) can be

written more explicitly as follows. Since X is arbitrary, we have by
the definition of s(L):

_ L+l ¢ . » (19.38)
C; = {Llog I, Z f’"‘T,O’ otherwise

provided that the determinant of the latter set of equations does not
vanish. If it does vanish, then a relation must be introduced to connect
the C; whose I; >> |L|, but some of the C; whose I, < |L| will become
arbitrary. We give, as an illustration, the form of the solution for the
constant cross-section approximation. Replacing L by —s to avoid
confusion with the diffusion length, and choosing the arbitrary multiplier
X in & convenient manner, we have

bl p) = [2(1-glogﬁ{)8(u—§)+l_; -
where the subscript s indicates the particular value of s used.

The interpretation of the ‘solution’ (19.39) is not difficult. The ap-
pearance of the term §(u—s/l) indicates that it corresponds to the
presence of a collimated source which emits neutrons at an angle cos-1(s/l)
to the direction of the z-axis. For s > 0, (19.39) violates the conditions
at x = —o0, but this objection no longer holds if (19.39) is applied to the
half-space = > 0 only, for instance, instead of all space. The flux
associated with (19.39) is e—=#, and conversely, if the flux is e~+*, the
angular distribution is of the form (19.39); this follows from the above
derivation. Now in the plane case of the constant oross-section approxi-
mation py(z) for z > 0, due to a boundary or a plane source at z = 0,
was given by an expression of the form

]e-”/', (19.39)

. 1
pul#) = [ glo)e=ot da.
0

. It follows that the transient part of the corresponding angular distribu-
tion is

14
buleo ) = [ glop,(a, ) da. (19.40)
]

" The above arguments can be extended at once to other geometries and
* to multi-group theory. The infinite-medium solutions which violate

1 Unless X is otherwise fixed, it need not be stipulated that L is not a root of (19.26).

) For if L is & root of (19.26) lying on the cut, the equations (19.37) can again be rendered
. soluble by putting X = 0, say.
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the conditions at infinity are therefore important as giving, by super-
position, the transient terms, although none of these solutions is
physically permissible by itself. ;

The discussion of these ‘solutions’ will be made use of later; for the
mmoment we shall continue with the problems for which an exact solution
is known in the constant cross-section approximation,

19.3.3. An infinite medium conlaining sources

The formal analysis in the case of an infinite medium containing
sources is the same as in the constant cross-section approximation.
For instance, in the case of an isotropio point souree of strength S (i.e.
emitting S; neutrons of the sth group per unit time per unit solid angle),
we can repeat the arguments of § 5.3, taking care not to permute factors
which do not commute, and obtain

1 1 -1
o) = f 1{1_51 1tan ’pl.fc} I tan-1pl. Se®r dp,
- (19.41)
The singularities of the integrand in the complex p-plane cut along the
imaginary axis from i/maxl; to ico and from —ic0 to —i/max], are
given by the roots of

ll_ %[‘%&n-lp[.fc =0, (19.42)

and these are closely related to those of (19.26). In fact, if i and B are
any two matrices, |UB| = |BU| (this notation signifies the deter-
minants), and hence |1—UB| = UL —BUYU-Y| = [1—BYU|. Using
this and the substitution L — i/p, we immediately see the equivalence
of (19.26) and (19.42).

If the number of pairs of roots of (19.26) in the cut plane is equal to
“the number of groups, it can be shown that, along the cut, the quantity

-1
{1._ %["%ﬁm‘lpl.fc} -1 tan-ipl

remains finite and varies smoothly, so that, on changing the path of
integration and using the method of residues, we have

p(r) = Z -lr-e-"‘t%,, S+ f W(s)e-* ds. S, (19.43)
k 1/maxly
where the B, are some constant matrices and W(s) is a smoothly varying

bounded matrix function of s. The first term in (19.43) can oclearly be
identified with p,,(r), and the second with Pulr).
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If the number of pairs of roots of (19.26) in the cut plane is less than
the number of groups, it may happen, as we have already seen, that
(19.42) has further roots which lie on the cut itself, or that it has roots
beyond the cut on other sheets of the Riemann surface, which are yet
80 near the cut as to affect the values of the integrand on the cut. In the
former case (poles of the integrand on the cut) the contour must be
indented at these poles in following the cut; alternatively, the principal
value of the integral along each side of the cut can be taken and half the
residue at each pole added for each side of the cut. The contribution of
these added half-residues will clearly be the same in form as that due to
the poles in the cut plane, i.e. of the form

(1/r)exp(—r/L*)B*S, (19.44)
and, in a certain range of r values, this may predominate over the princi-
pal value of the integral along the cut. In the other case (poles of the
integrand near the cut on another sheet), the integration along the
cut can be carried out without difficulty, but the value of W(s) will be
very large near these poles, and in a certain range of r values the contribu-
tion from this part of the path of integration may predominate over
that from both smaller and larger s. The contribution from this maxi-
mum of MW(s) will again be of the form (19.44).

For very large r, the contribution from the smallest s will be dominant,
and for very small r, that due to non-scattered neutrons. Therefore, if
for example the number of pairs of roots of (19.26) in the cut plane is one
less than the number of groups, the behaviour of p,(r) will be of the form

o(1/r%) for small r,
Pulr) = { O([1/r] exp[—r/L*]) for intermediate r, } (19.45)
O(exp[—r/max L;]) for very large r.

The appearance of a distinct intermediate range is connected with the
disappearance of one of the terms in p,(r).

The same kind of analysis can also be carried out for other types of
source. On repeating the arguments of § 5.5.2, we can see that, for plane
sources and surface sources of large curvature, the importance of the
intermediate r range in (19.45) is greater than for a point source.

19.3.4. Semi-infinite media

Having discussed the cases where solutions are available for an
infinite homogeneous medium, we now turn to the case of an infinite
half-space. Here the situation is in one respect markedly different
from that in the constant cross-section approximation. In the latter
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(‘one-group theory’), Milne’s problem could be solved by means of the
Wiener-Hopf method, but in multi-group theory this solution is no
longer available except in some special cases. This difference arises in
the following way. The essential step in the application of the Wiener—
Hopf method to one-group theory was to represent

tan-1pl
ol
&8 the product of two functions, one regular in the upper half-plane
(imp > 0), and the other regular in the lower half-plane (im p <0).
This was achieved by taking the logarithm of (19.46) and representing
it as the sum of two functions satisfying the prescribed regularity econdi-

tions. In multi-group theory, instead of (19.46), we have to consider
the matrix function of p

1—¢

(19.46)

1 —11) [ tan-1p1 fc, (19.46')

and represent this as the product of two matrix functions satisfying the
regularity conditions. However, the logarithm of the product of two
matrices is not equal to the sum of their logarithms unless the matrices
commute. Thus the essential step in the Wiener-Hopf method cannot
be carried out by the same means as in one-group theory except in
special cases, and no alternative procedure has yet been suggested.

One of these special cases is that where the various groups differ only
a8 regards the mean number of secondaries per collision ¢,, the mean free
path being the same for all groups. In this case [-(tan—pI)/p is not a
matrix but a number, and the following procedure can be used. Let the
matrix fc be represented in diagonal form:

fc = Gg&-, (19.47)
where g is diagonal. Then (19.46’) can be rewritten as
tan-1pl\ _ .
G(l g 7l 1)(5 ,
where G is independent of p and 1—g(tan-1pl)/pl is dingonal, A diagonal
matrix can always be represented as a product of the kind required by
applying to each of the diagonal elements the same transformations as
in one-group theory. This gives
1—g(tan~'pl)/pl = H*(p)[H-(p)],

say, where b+(p) and h=(p) are also diagonal. The required representation
of (19.46') is then ’

ShH(p)S1. &[h-(p)]-1S1.
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It is to be noticed that the factors into which (19.46') has been divided
commute in this case, and this is why the required representation is
possible,

The commutability of these factors could have been foreseen in the
following manner. The matrices f and ¢ enter only as f¢, and so, if [is a
number and not a matrix, the only matrices that can be encountered
are fc and those constructed from it by means of analytical operations
with numerical coefficients. It is not possible to arrive by this means
at non-commuting matrices, starting from a, single matrix.

194. The diffusion approximation and the Serber-Wilson
method

19.4.1. General remarks

We now consider the available approximate methods. Thess we shall
take in the same order as when discussing the constant cross-section
approximation. However, it must be pointed out that the relative
advantages of the various methods are no longer the same as in that
approximation. If p(r) is represented in the form

P(r) = pain(r)+pu(r), (19.48)

where p(r) satisfies the same differential equation as the permissible
infinite-medium solution, and p,(r) is of the order of exp[ —d/max1,],
the situation in multi-group theory differs markedly from that in the
constant cross-section approximation. Firstly, it follows from the
remarks in § 19.3.3 that less information is now available about Pee(T)
and its importance compared with the other term. Secondly, as can be
expected from the discussion of (19.30) and (19.45), Pic(r) may, for some
values of f, ¢, and 1, be of greater importance from the analytical point
of view than it could be in the constant cross-section approximation.

In the spherical harmonics method and the discrete ordinates method,
Paire(r) and p.(r) are treated on the same footing. In the diffusion
approximation and the Serber-Wilson method, however, Pie(r) is
neglected, and only an indirect allowance is made for it. This implies
that the two former methods can be used as before, and the acouracy in
each order of approxination will be about the same as in one-group
theory. In the latter two methods, on the other hand, much greater
uncertainties and limitations may be met with than in one-group theory.
The disoussion of these methods will therefore be of a somewhat negative
character.
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19.4.2. The casewhere the infinite-medium equation has enough solutions

In the diffusion approximation and the Serber—Wilson method, we
try to approximate the solution for a finite medium by means of a
suitable combination of solutions of the differential equation satisfied
by p(r) in an infinite medium. That is, we try to approximate p(r)
by an expression of the form (19.31), where the B, are solutions of
(19.25) and the ¢,(r) are solutions of (19.32) which are regular in the
region considered, though not necessarily regular in all space. The
possibility of doing so may depend on the number of these solutions, i.e.
on whether the number of pairs of roots of (19.26) in the out plane is
equal to or less than the number of groups used.

We first consider the former case. Here the general solution of the
infinite-medium differential equation contains exactly as many arbitrary
parameters (or depends on exactly as many arbitrary functions) as are
needed to satisfy two conditions for each group at each interface and one
condition for each group at each free surface. That is, the same number
of conditions can be satisfied for each group at each boundary as in the
constant cross-section approximation, and this is clearly what is wanted,
We shall therefore call th{g the case where the infinite-medium equation has
enough solutions. ¢

Let us now consider the actual conditions to be imposed. For the
Serber-Wilson method these are self-evident. In one-group theory we
exactly satisfied the integral equation at the centre of the system; we
shall now do so for each group separately. Passing to Wilson’s formula-
tion of the method, we have

Yaw(r, —1) ts continuous, (19.49)
and we should also wish to satisfy the condition that the total number of
neutrons in each group leaving a medium is equal to the number entering
the next medium, which gives

' Jawlr) is continuous, (19.50)

The diffusion approximation gives rise to greater difficulties, since
the integral conditions of the Serber-Wilson method are to be replaced
by purely local boundary conditions. In the absence of an exact solution
for an infinite half-space and for adjacent semi-infinite media, there is
no adequate guidance for this purpose.

The conditions most frequently imposed at an interface are that the
flux and the normal component of the current are continuous in each

group, i.e. Paie §8 continuous (19.51)

and ' Jaite.n 18 continuous, (19.52)
2505.90 T
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where j4,,, is the normal component of f,,,. The condition (19.52) is a
natural extension of (8.13), and would be expected to be a fairly good
approximation, like (8.13). The condition (19.51), on the other hand,
ocorresponds to (8.15), which is comparatively poor, so that (19.51)
cannot be very accurate either. The best condition on the flux in one-
group theory was (8.12), and this, by (8.14) and (8.13), could be written

l(r)(8/on)[log p(r)] 18 continuous, (19.53)

where the derivative is taken along the normal to the interface. If §is
nearly diagonal for both the media at the interface, i.e. if

[ il €1 forj #1, (19.54)
the transfer of neutrons from one group to another within a few mean
free paths of the interface can be neglected. Thus each group can be
considered separately near an interface, and the boundary conditions

are the same as in the constant cross-section approximation. Taking the
latter in the form (19.53), we find

l,(r)—ai[log py(r)] i continuous for all i. (19.65)

However, unless (19.564) is satisfied, little reliance can be placed on
formula (19.55).
For the free surface, we again assume (19354), repeat the arguments

leading to (19.55), and use (8. 9) and (6.29); this leads to the condition
that

pi(r) vanishes at a distance 0-T1041,/c,f;_,, beyond the surface. (19.56)
Alternatively, we can put:

Jsn(T)p((r) at the surface, for each i, equals its value in the one-group
diffusion approximation with ¢ = ¢, fi_,;. (19.57)
If (19.54) holds, both these methods should lead to very similar

results, but little is known about them when (19.54) is not valid. We
shall return to this question at the end of § 19.5.3.

19.4.3. The case where the infinite-medium equation has not enough
solutions

(a) Preliminary considerations. The uncertainties involved in the

method we are considering are still greater when the number of pairs

of roots of (19.26) in the cut plane is less than the number of groups

(m’ < m). In this case the solution of the form (19.31) does not provide

enough parameters (or arbitrary functions) to satisfy all the conditions
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imposed. Yet it is unsafe to disregard any of the boundary conditions,
despite the uncertainty in their derivation. We should therefore
supplement (19.31) by further terms to give the additional parameters
required. The form of these additional terms can be found as follows.
It has been remarked in § 19.3.2 that the transient part of the exaoct
solution can always be regarded as a superposition of infinite-medium
solutions which do not satisfy the conditions at infinity. The additional
terms to be introduced in the diffusion approximation and in the Serber-
Wilson method should, of course, be as similar as possible to the terms
which actually occur in the exact solution. We therefore take them in

the form Crbufr), (19.58)
where L now lies on the cut, ¢, (r) satisfies (V3—1/L3)$,(r) = 0, and the
components of the column vector C; satisfy (19.38). If the correct linear
combination of the expressions (19.58) for all L on the cut is taken, the
exact p,,(r) is obtained, and by adding an expression of the form (19.31)
we find the exact solution. The approximation made consists in this

cage of taking only a few terms of the form (19.58) and not those for all
L on the cut.

(b) The Serber-Wilson method. Let us examine to what extent the
introduction of m—m’ terms of the form (19.58) will resolve our difficul-
ties. We take first the Serber-Wilson method, which is of course
restricted to spherically symmetrical systems. If the medium where
m’ < m (number of infinite-medium solutions inadequate) does not

extend to infinity, we must use the most general spherically symmetnos.l
solution of (V2—1/L%)¢, (r) = 0, i.e.

¢r(r) = (1fr}{A-erbtA+el} (L > 0). (19.59)
In this expression, A +exp(r/L) arises from the transient due to the outer
boundary of the medium considered, and therefore does not in general

vanish. For A+ 3 0, however, the contribution of (19.59) to Qg (r, —1)
will contain a term proportional to

and this diverges for any non-negative L on the cut. Thus Wilson’s
generalization (9.11) of Serber’s condition (9.1) is no longer justifiable,
while (9.1) itself does not provide enough information. Thus, if the
medium for which m’ < m does not extend to infinity, we ocannot
supplement (19.31) by (19.58) in the Serber~-Wilson method, which
must consequently be abandoned.
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However, if m’ < m only for the cutermost medium of the system, and
this extends to infinity, then A+ in (19.59) vanishes by the conditions at
infinity, and therefore Y, (r, —1) does not involve divergent integrals.
The arguments underlying the Serber-Wilson method are thus applicable.
The choice of Lin (19.58) can be decided as follows. The additional terms
(19.58) ought to simulate the behaviour of Ps(r). Since the medium
extends to infinity, large distances are the most relevant, and at these
distances p,.(r) is of the order of exp[—r/max[]. Thus, if m—m’ = 1,
i.e. only one pair of roots in the cut plane is lacking, and so only one term
of the form (19.58) is needed, the most reasonable choice of I, in this
term is max!l,. The total p(r) in the outermost medium is therefore
approximated (with a slight change of notation) by

1 m=1 . ‘or
pw(r)=;{kgxc,,e Tt C'e-rimaziy), (19.60)

where C,, is the solution of the equations

C, = tLlog Lt lsepag,
" Lp—1
and the column vector C* is such that its component for the group with
the longest mean free path is arbitrary, while the other components are
the solutions of (19.38) with L replaced by max,. This procedure has
been reported to yield satisfactory results.

If more than one pair of roots of (19.26) in the cut plane is lacking
(m—m’ > 2), several terms of the form (19.58) must be used. One of
these will again correspond to L = max,, but the question of the best
choice of L in other terms has not yet been investigated.

(¢) The diffusion approximation. We now consider the applicability
of this method of supplementing (19.31) by terms of the form (19.68)
when the diffusion approximation is used. Here one uses purely local
rather than quasi-integral boundary conditions, and so it does not
matter whether a medium where m’ << m extends to infinity or not. The
restriction on the applicability of (19.58) which was encountered in the
Serber-Wilson method will thus not occur in the diffusion approxima-
tion. However, a certain limitation arises for a finite medium because of
the uncertainty of choice of L in (19.58) Since (19.58) should simulate
the behaviour of p,,(r), it follows from (19.45) that the best value of L
in (19.58) is either L = L* or L = max!,, depending on the distances
involved. The choice between these two alternatives can sometimes be
made on general grounds without detailed supplementary calculations,
but if this is not the case the diffusion approximation should be aban-
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doned and the spherical harmonics method used (see the following
section).

19.5. The spherical harmonics method and the discrete ordinates

method

19.5.1. The spherical harmonics method Jor plane geometries

We now consider methods in which Pu(r) is treated on the same
footing as pyy(r), and which are therefore free from the uncertainties
and limitations encountered in the Serber-Wilson method and the
diffusion approximation. These are the spherical harmonics and
discrete ordinates methods. The general development of these two
methods in multi-group theory is very similar to that in the constant
cross-section approximation. However, we shall give it in some detail,
mainly in order to show how the matrix notation introduced in § 19.2.4

can be used to simplify the algebraio manipulation. This work is due to
Mandl (30).

Let us discuss first the spherical harmonics method, beginning with

the case of plane symmetry and no sources. In this case, expanding
(19.5°) in spherical harmonics, we obtain as in the derivation of (10.4)

(1) a(@)+ml_(2)+-(2n+ 1)1, @) = fel-py(zBpn.  (19.61)
The general solution of )(19.61) can of course be obtained as the super-
position of solutions varying exponentially with , i.e. of solutions of
the form $,(2) = A(n, L)esiL, (19.62)
The simplest way of determining the permissible values of L and the

corresponding A(n, L) is as follows. We proceed as in § 10.2, introducing
the auxiliary column vectors G, (L) defined by
GuL) = (—IMB(LI-1)— L[ Qy( LI-Y)P,(L1-)— On(LI-Y)]fel-1} B,
19.63
where P, are the Legendre polynomials, Q, are Legendre functions( of thg
second kind, and B is a column vector to be defined,
The first two G,(L) are clearly
GyL)= B

and Gy(L) = [fe—1]LI-1B } ’
while the recurrence relations for F, and @, show that
(n+4-1)G, .o (L)+(2n+ VLG (L) +nG, (L) = 0 forn =1. (19.85)
Using these relations, we see at once that

Yu(2) = Go(L)ewL (19.62°)
is the formal solution of (19.61).

(19.64)
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In the Py approximation {y.,(x) is put equal to zero, and therefore
Gy 41(L) = 0. This gives for B the equation

L¥-1Py (LI B = LM Qo L1 Py o L) — Qo LI)]fel 2 B,
(19.66)
where both sides have been multiplied by 1/L~+! in order to make the
coefficients polynomials in 1/L. The matrix equation (19.68) is, of
course, equivalent to a set of m ordinary equations for the m com-
ponents of B, where m is the number of groups used. If these m equations
have a non-trivial solution, L must satisfy the determinantal equation

| L=N-1Py (y(L1-1)—= LM Qo L1-1) Py 1o (L1-1) — @ 4y (LI-1) eI | = 0.
(19.67)
In odd-order approximations, the left side of (19.87) is always a-
polynomial in 1/L3 of order }m(N+1), i.e. it has exactly m(N-1) finite
roots for 1/L, i.e. non-zero roots for L. Denoting these roots by 4L,
and the corresponding solutions of (19.66) by B,, we find for the general
expression for the neutron ﬁux in the Py approximation:

$o2) = z ) B{Ajellat Af e-oila), (19.68 a)

where A} and Ag are arbitrary numerical coﬂptants, and the B, are
normalized in some convenient manner, e.g. by stipulating that the

largest component of each B, is unity. The corresponding expression
for the higher moments is

Pu(2) =m:§:nG,,(L,‘){A,;*e=/Lt+(—— 1" Ay e~=/Ls}, (19.68b)

it being understood that B in G,(L,) is replaced by B,.

If at least one pair of roots L, of (19.67) is purely imaginary, then we
have a multiplying medium. If no roots are finite and purely imaginary,
but there is at least one pair of infinite roots (L, = o0, i.e. 1/L; = 0),
capture and multiplication balance each other. If all the roots L, of
(19.67) are finite and not purely imaginary, the medium is capturing.

The constants 47 and A; in (19.68) are determined by the boundary
oconditions. These are evidently that the neutrons in each group satisfy
the same boundary conditions as in the constant cross-section approxima-
tion. For example, at an interface all the relevant moments in each
group should be continuous, i.e.

¢, (%) is continuous for n = 0,1,..., N,

while at a free surface the neutrons of each group satisfy either Marshak’s
or Mark’s boundary conditions. Since there are exactly m(N--1)
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arbitrary constants per medium, there are just enough conditions to
determine all the constants.

19.5.2. The spherical harmonics method for other geometries

The above analysis can be immediately extended to other geometries,
We first consider the neutron flux )y (r). In connexion with equation
(12.13') we remarked that the equation governing y,(r) can involve
o/ox, ooy, and 3[oz only through V2, V4, etc., and consequently, to
determine this equation, it suffices to take the corresponding equation
in the plane case and replace (d/dz)" by V». The same is obviously true
of multi-group theory. It is also cloar that the equation governing
() in the planc cage, in the Py approximation of multi-group theory, is
obtained by replacing L and B in (19.68) by (d/dz)-1 and ,(z) respec-
tively. The corresponding equation for (r) in a general geometrical
arrangement is therefore found by replacing L and B in (19.66) by
(V#)~t and (r) respectively. Since each side of (19.66) is a polynomial
in 1/L?, the equation so found will not contain negative or fractional
powers of V2, It can be verified that this equation is satisfied by B, ¢,(r),
where B, and L, are defined as in the plane case and ¢,(r) is a solution of

VE—1/Li)(r) = 0 (19.69)

which is regular in the region occupied by the medium oonsxdered
Superposing all such solutions, we obtain

dotr) = "% Bug), (19.70)

and this is the most general solution of the equation for ,(r), since it
has the correct degree of arbitrariness.

If the symmetry properties of the system are such that the higher
moments ¥, (r) are determined uniquely by )(r), then they are given

by +
Vo) =3 GolLul)n (19.1)

where G ,(L,) is the same as in the plane case and [¢,(r)],, is constructed
from ¢,{r)in the same way as in the constant cross-section approximation.
If these symmetry properties are absent, so that within each group
W, (r) contains more than one component, the appropriate comple-
mentary functions have to be added to (19.71). In the constant cross-
section approximation, the equations governing these complementary
functions did not involve ¢. The corresponding equations in multi-group
theory therefore do not involve the matrices f and ¢. The only matrices
that can appear in these latter equations are therefore powers of the
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diagonal matrix I. This means that the complementary functions
concerned can be determined separately for each group, and within
each group they are governed by the same equations as in the constant
cross-section approximation.

19.5.3. The P, approximation and a comparison of it with the di [fusion
approximation

It may be of interest to examine more closely the lowest approximation

in the spherical harmonics method, namely the P, approximation, and

to compare it with the diffusion approximation. The relations (19.64)
and (19.65) give at once

Gy(L) = (3L} (1~ L1 —3] B,
and hence the equation (19.66) becomes in the P, approximation
(31-*—3L-*) B = 31%cI-1B,
which can also be written
(1—{1/3L312—fc)I-1B = 0,
Thus the equation (19.67) in the P, approximation is

\L—(1/3L#)P—fc| = 0, (19.72)
which is the same as (19.28). This shows that, if (19.27) is satisfied, the
values of L, used in the P, approximation are very close to those used in
the diffusion approximation, and, as in one-group theory, the P, approxi-
mation may be regarded as a variant of the diffusion approximation, the
more 80 gince the P, approximation contains no provision for taking the
transient terms into account.

In discussing the constant cross-section approximation, we remarked
that the P, approximation is a poor version of the diffusion approxima-
‘tion. The same would be true in multi-group theory if the diffusion
approximation could be developed as far as it can in one-group theory.
However, we have seen in § 19.4 that this is not so, and by multi-group
diffusion theory one usually means a cross between the P, approximation
and an ideal diffusion approximation resembling that of one-group
theory. Thus, in using the diffusion approximation boundary conditions
((19.51) and (19.52)), the values of L, are taken from the ideal diffusion
approximation, whilst these boundary conditions themselves come
from the P, approximation. We have remarked in § 10.5 that such a
procedure is often less satisfactory than the consistent use of the y
approximation, sinoe the distortion of the diffusion length tends to

oompensate for the neglect of the transient flux. The same is clearly
true in multi-group theory.
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Thus, if (19.27) holds, the P, approximation is usually more satisfactory
than the available multi-group diffusion approximation. If (19.27) does
not hold, but (19.26) still has as many pairs of roots in the out L-plane
a8 there are groups, the multi-group diffusion approximation, even in
its present unsatisfactory form, may be the more reliable. If the number
of pairs of roots of (19.26) in the cut L-plane is less than the number of
groups, reliable results can be obtained only by passing to an approxima-
tion, such as the P, approximation, which contains a provision for taking
account of the transient terms,

At the end of § 19.4.2 we mentioned that it might be possible to
prescribe the surface value of the ratiof(r)/p(r) as a free-surface boundary
condition in the diffusion approximation. This idea, like (19.51), is taken
from the P, approximation. If this is done consistently, the ratio in
question should be given not by (19.57), but by

J(r)/p(r) = § at the free surface, (19.73)
as required by Marshak’s boundary conditions, which are more satis-
factory than Mark’s in low orders of approximation. The condition
(19.73) is simpler than (19.57), but its application to the diffusion
approximation is open to the same criticisms as that of (19.51).

This concludes our examination of the multi-group diffusion approxi-
mation in the light of our knowledge of the multi-group spherical
harmonics method.

19.5.4. The discrete ordinates method

We ought now to discuss the discrete ordinates method. However, the
development of this method in multi-group theory is the same as in the
constant cross-section approximation. The equation (19.5') for the
plane case is now approximated by

B (@, ) + 1, ) = el S a,9(z, py), (19.74)
&nd if q)(x, ’L‘) = z A"ke‘/Ll, (19.75)
the equations for the A,; are :

Ai,k = %‘[1 +F:‘ I/L,,]‘lfcl‘l ; aj Aj,k'
Hence, if we form the equation for
Bk = [—lzaiAj.k
and stipulate that it should have non-trivial solutions, we obtain
|1_;,;a,[1 T :/L,,]—lfcl =0, (19.76)
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- which defines the permissible values of L. The nature of the boundary
~ conditions is evident; they are fixed for each group separately. In
* discussing such points as the choice of summation formula, the argu-
- ments given for the constant cross-section approximation continue to
* be valid.

" 19.6. The perturbation method

The extension of the perturbation method, and in particular of the
; statistical weight theorem, to multi-group theory has been carried out
by Tait (48). The method is the same as in the constant cross-section
approximation. Applying a variation to the equation (19.17") for p(r)
(the ith eigenfunction of that equation), multiplying through by p}(r)
. (the eigenfunetion of (19.20) for the same eigenvalue) and integrating
. over all r, we obtain similarly to (14.6):

: % J' f f pir)p(r) AV

=_£J'”d1'”flrljr',79£(r)x

X exp[—t(r, r') Bf(r")e(r")1-}(r")Jp (r")+
B[ [ e
X exp[—t(r, r')] Tﬂds 3"1(f')f(l")C(r')-l“(r')m(l"). (19.77)
where r’ =or+a(r—r')/ jr—r’|,

Ir—r|

and the factor exp[—t(r,r’)] f ds 817X(r")
1]

represents simply —3&exp[—t(r,r’)]. The terms in 3p(r) disappear on
* integration by virtue of the equation for pf(r). Using this equation, the
first term on the right of (19.77) can be rewritten as

— [ av el e )3 Bl Vet )2 o).

. On changing the variables of integration in the same manner as in
- (14.10), we can rewrite the second term on the right of (19.77) as

%fffdl"ffdﬁfdsfds’p}(r'+s$2)x

X exp[ —H(r”, r"+8Q)—t(r*, r"—&'R)] X
X" )(r"—&'Q)e(r"—8 Q)Y r" —5'R)py(r"—5'Q).
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The matrices 8[~*(r") and exp[—t(r",r"—s'RQ)] are both diagonal, so
that the order of these two factors can be interchanged. Then y,/4m
times the integral over s’ can be at once identified as ,(r", ), while
according to (19.22) the integral over s is (4m/y)i(r", ). The second
term on the right of (19.77) thus becomes finally

(rly) [[[ V" [[ dQ 1", Q1AW (e, ).

Collecting the above results, and assuming that p, and p] are normalized
in accordance with (19.21), we obtain

8ys = —vq [ [ [ 4V plx)Ue) e (o)L f(r)e(r) -2 Jo ) +

4 | f [av f [ dQ @i(r, )BT W (r, R).  (10.78)

This is the multi-group form of the statistical weight theorem.

To find the perturbation in the lowest eigenvalue of a critical system
(y¢ = v = 1) it is sometimes convenient to rewrite (19.78) in a slightly
different form. If {(r, ) and Yi(r, Q) are expanded in spherical
harmonics, we have

Yoolr) = [[ bilr, 2) dQ = py(r),
Pho(r) = [ [ iir, ) dQ = pl(r)ir)cXr)-1(r);

the last of these relations comes from equation (19.23). The formula
(19.78) can then be rewritten, if (19.27) holds, as

Byo ¢ — [ [ [ a4V e{(E)(r) e r)fAEBLF(E)(r)] 2 o) +

+am [ [ [ av [ [ a0 [Witr, @)—(1/am)bl(r)]B-1(r) X
X [Wo(r, 2)—(1/4m)poo(r)].  (19.78")
Under the conditions of the diffusion approximation,
Yo(r, 2)—(1/4mphg(r)

is approximately equal to (3/4n)f,(r), while }(r, 2)— (1/4m)pl(r) is,
if (19.27) holds, approximately equal to (3/4)7}(r)I(r), and this leads to
the diffusion approximation form of the statistical weight theorem in
multi-group theory.

19.7. The Monte Carlo method and anisotropic scattering

The variational method can be extended to multi-group theory in the
same manner as the perturbation method, and the extension of the
iteration and Monte Carlo methods to multi-group theory is evident.
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It is, however, of interest to remark that, whereas in all other methods
the amount of numerical work involved increases very rapidly with the

- number of groups used, in the Monte Carlo method the amount of work

increases only slightly with the number of groups, if at all, once the
constant cross-section approximation is abandoned. There is, in fact,

* no need to replace the exact equations of Chapter II by the approximate

ones derived in § 19.2. This ability of the Monte Carlo method to deal
with the actual form of the energy dependence of cross-sections is one of
its main attractions,

We have hitherto discussed only problems where the scattering is

 isotropio in the L system. All the methods of solution described above
- can, of course, be at once extended to the case where the f,_,, in (19.5)
~ are not constants, but are polynomials of comparatively low order in
8.8, However, caution is necessary regarding the validity of the

equations obtained in this way from (19.5). We have seen in Chapter I

- that anisotropic scattering in the L system may arige either from

scattering by heavy nuclei, because the scattering in the C system is
f anigotropio, or from scattering by light nuclei, because of the difference
- between the C and the L systems. In the former case, the replacement
" offy 4in (19.5) by J4-+(S2’'>Q)is often possible and justifiable. The latter
_ oase (light nuclei) is, however, much more often the important one, and

sz .

here, a8 we saw in Chapter II, the energy loss per collision depends on

~ the scattering angle in the L system. This kind of situation cannot be
- described by simply replacing f;_,, in (19.5) by fr (R’ - Q), unless
the number of groups is extremely large.

Of course, the Monte Carlo method is equally applicable whether the

. scattering angle is random or a function of the energy loss, However, if
- an analytical solution is required for the case where the anisotropy (in

the L system) of scattering by light nuclei is important, then one of the

- procedures described in the following chapters should be used.

Nevertheless, this does not exclude the Ppossibility of a semi-empirical

. multi-group treatment of media containing light nuclei. We shall not,

however, discuss such a treatment of the problem.
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20.1. The type of problem for which the method is intended

IN using multi-group theory, we were concerned with situations which
were, in general, characterized by the following three features:

(1) the system was spectrum-regenerating;

(2) the variation of the relevant cross-sections with energy could be
approximated by means of a step-function with relatively few
discontinuities;

(3) the anisotropy in the L system of the scattering by light nuclei
could be neglected.

The third of these assumptions implies, of course, that (except in semi-
empirical methods) scattering by light nuclei is unimportant, the main
mechanisms of neutron energy loss being inelastio seattering, or elastic
scattering by moderately heavy nuclei, or both.

We now consider problems in which one or more of the above assump-
tions are. seriously incorrect. In the present chapter we shall still
assume that the system is spectrum-regenerating, but the other two
assumptions will be completely reversed: we shall assume that the
relevant cross-sections (or rather these oross-sections multiplied by the
velocity) can be approximated not by step-functions, but by polynomials
in the velocity, of a relatively low order, and that scattering by light
nuclei is not at all negligible, but rather the only important mechanism
whereby a neutron in the system can lose energy. That is, we neglect
the inelastic scattering, and regard all nuclei, apart from the fow
lightest, as being infinitely heavy.

It should be noted that such a combination of assumptions introduces
& certain limitation on the composition of the systems that can be
considered. Firstly, if the system is to be really spectrum-regenerating,
as opposed to not degrading the spectrum indefinitely (see §18.2), it
must contain fissile material. Secondly, there is a restriotion on the
relative numbers of light and fissile nuclei, If the number of light nuclei
in every medium in the system is very small compared with the number
of fissile nuclei, the spread in energy among the neutrons in the system is
small, and the constant cross-section approximation can be applied. If,
conversely, the number of light nuclei in every medium is very large
compared with the number of fissile nuclei, or, more acourately, if
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+ Nyoy > Nya, (N = number of nuclei per unit volume, o; = fast neutron
. scattering cross-section for light nuclei, o, = fast neutron fission cross-
* section), then the fissions caused by non-thermal neutrons can be
neglected, and it is more profitable to use the method given in §23.5.
" The method described in the present chapter is applied in practice to
, two cases. Davison (13) originally suggested it for use when Njo, is
. comparable with N, o, in the most important region of the system, while
. Elliott (18) has extended the method to the case where in some regions
. of the system N,o,> Njo;, while in other regions the inequality is
reversed.
" We shall call this method the polynomial approximations method.
The real reason for this name is that the functions &,, introduced in
§20.3, are approximated by polynomials in v.

-~ 20.2. The transformation of the Boltzmann equation
20.2.1. Simplifications made in the presentation of the method
For the sake of brevity, we shall assume in our presentation of the
. polynomial approximations method that the light nuclei in the system
* are those of hydrogen. The modifications necessary if other light nuclei
are present will be evident. We shall not restrict ourselves to the actual
_ form of the variation of the hydrogen cross-sections with energy, but
take them a8 arbitrary polynomials in the velocity. The medium used
* will thus be a ‘pseudo-hydrogen’, with unit nuclear mass but varying
. cross-sections which are not necessarily those of hydrogen.
We also assume for simplicity that the scattering by the heavy nuclei
' is isotropie, while the fission spectrum can be approximated by a delta
function. The results when the former of these assumptions is no longer
made will be evident, whilst we have shown in § 1.2.4 that the spread of
the fission spectrum in the logarithmic energy scale is small. The second
assumption is thus reasonable, since (2.16) shows that it is more natural
to use the logarithmic scale. The scattering in pseudo-hydrogen is taken
" a8 isotropic in the C system, which is correct for all light nuclei (see
§1.2.2). With these simplifications we can use (2.8'), (2.16), and (2.18)
to rewrite (2.7) in the stationary case as

oY) oo
L e o)

____l’ 1 ’ v . v
=3 I(v,)S(v—vo)+W8(v —v) 4 wT’l;.(T’)S(Q'Q _7), (20.1)

_ where v, is the speed of neutrons released in fission, ,(v’) is the scattering
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mean free path in pseudo-hydrogen, Z,(v') is the seattering mean free path
for heavy nuclei, and the other symbols mean the same as in Chapter II.
Substituting (20.1) into (2.4') and dividing by v, we obtain

.grad N(r, vQ)+{1 [l (R)}N(r, vS2)

— ?1711,(7) f f N(r, o) dQ’+V8$;:°) f f f VE o) o gyder+

1)
1 N(r,v'SZ') v ’ , ’
+;” —W—S(?—-.Q.Sz)dv . (20.2)

20.2.2. The application of the spherical harmonics method

In multi-group theory, our first step was to reduce the determination
of N(r,v&) to that of only a finite number of functions of r and . In
the present chapter, the order of elimination is different, and we start
by reducing the determination of N (r,vQ) to that of a finite number of
functions of r and v. This limits us to the spherical harmonics method,
since we wish to determine the angular dependence for any geometrical

arrangement to any degree of accuracy. We expand (20.2) in spherical
harmonics, using the identity

p—po) =} 3 (2n-+1)E,(1)By(jto)
and taking the plane case for simplicity, and thus obtain

VLA B () BN )

ox ox lu,',(”)
_ [Nz, 0) | v8(v—vy) [ Ny(z, ')’ dv’ 5
o f ot

vl (v')
where N, (z,) is defined, similarly to (10.3), by

No(z,v) = [[ Niz,v,p)Byfp) de2,

p being the z-component of .
The modifications necessary in (20.3) for other geometries are evident.
For instance, in the spherical case, the left side of (20.3) becomes

+2(2n+1) fMPn(;), (20.3)

DG+ e AN npl,

and for more general geometries we proceed as in Chapter XII.
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In the Py approximation we neglect the term in Ny,,(z,v) and the
. equations (20.8) for » > N. (N, the order of the approximation, should
. not be confused with N(r, v) or with N,(r,v).) The infinite system of

integro-differential equations (20.3) is thereby reduced to a finite system.
In what follows we shall understand by (20.3) this finite system, unless
otherwise stated.

The boundary conditions on the solution of (20.3) in an odd-order
approximation follow at once from the discussion in Chapter X. They
are that at the interfaces all the N, (z, v) are continuous for all v, and at the
free surfaces either Mark’s or Marshak’s conditions are satisfied for all v,

20.3. The method of polynomial approximations

20.3.1. The basic idea of the method

The system (20.3) is not easily solved exactly except in special cases.
We therefore attempt to doviss an approximate mothod, using the
following considerations. Firstly, for any v < v, we can reduce the
system (20.3) to a system of partial differential equations in x and v,
since the F,(v/v’) are polynomials in v. The general theory of partial
differential equations then shows that the solutions of this system, i.e.
the N, (z,v), are regular functions of v except at the singularities of
1/l (v), 1/L,(v), and 1/l,(v). Since we have assumed (§ 20.1) that v/l .(v),
v/l,(v), and v/l (v) are smooth functions of v which can be approximated
by low-order polynomials, it follows that, for » < v, the various N, (z, v)
can have singularities only for v - 0, and with suitable restrictions (see
§20.4.1) on the cross-sections as v - 0 the N,(x,v) will be regular for
0 < v < v, At v = v, the N,(x,v) each contain a term in §(v—v,), but
if we separate the delta-function terms by putting, say,

Nn(xs v) = g,,(z)S(v—vo)-}- G"(Z, v), (20.4)
where the G, (z, v) do not involve 3(v—v,), the above arguments show that
the G, are regular up to and including v,. That is, with suitable restric-
tions on the cross-sections as v > 0, the G, are smooth functions of v in
the range 0 < v < v, and can be well approximated by a few terms of
an expansion in orthogonal polynomials. Since the polynomials ortho-
gonal in [0, v,] are F,(2v/v,—1), where P, are the Legendre polynomials,
we have, denoting the order of the highest polynomial retained by S:

o

@, (z,v) = vlzs: P,(2v1._1) a[ 10,(2:_;_ I)Gﬂ(x,v') &', (20.5)

050 0

and this is a fairly good approximation, even for relatively small S.
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By means. of (20.4) and (20.5), (20.3) can always be reduced to a
system of ordinary differential equations in z alone, and these can be
solved by standard methods.

The approximation in which the expansion of N(z,v,u) in spherical
harmonics in u is terminated at Py(p) and (20.5) is terminated at
FPs(2v/vy—1) is called the Fy(Q)Py(v) approximation,

We shall now make some general remarks concerning formulae (20.4)
and (20.5). Firstly, we have assumed in deriving (20.5) that Lot (v),
l.(v), and I, (v) are such that G, (2, v) is regular as v - 0, This assumption
is, however, unnecessarily restrictive, It can easily be verified that the
series (20.5) converges even when the G, are gingular at v = 0, provided
that they do not increase too rapidly as v—+ 0. The modifications
necessary when this condition is not met will be discussed in § 20.4,

Secondly, we have derived (20.5) by converting (20.3) into partial
differontial equations. This conversion is possible when the light nuolei
involved are hydrogen or Ppseudo-hydrogen, but not for nuclei with mass
numbers greater than unity. However, we have used these differential
equations only in order to obtain a qualitative result, which is equally
valid, if less familiar, for integral equations. The expansion (20.5) is
thus equally satisfactory for all light nuclei.

The representation of N,(z, v) in the form (20.4) has a simple physical
interpretation. It corresponds to a classification of the neutrons into
those which have had no collisions with light nuclei and those which have
had at least one such collision. If the fission spectrum is not approxi-
mated by a delta function, but the other assumptions leading to (20.2)
are retained, then (20.4) must be replaced by

N, (x,v) = In(T)F(v) 4G (2, v), (20.4')
where F(v) represents the fission spectrum,

20.3.2. The application of Mellin transforms

We now consider in more detail the application of the ideas of the
preceding section. Substituting (20.4) into (20.3) and equating to zero
soparately the terms in 8§(v—v,) and the remaining terms, we have

(n+1)g 11 (@) + 1G5y (2)+ (204 1)g,, (2) /e (05)
(L, v v [ Gl vy av ’
- {(le(vo)+l](vo)) 90(1)+vo ! 1 ,(vr)"—} on (20 6)

850699 U
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and
(n +1)?_G_r,,+a:£z, v) 80,,_,(::, (2n4-1) q

) (2, v)

Gz, v) G (z,v)dv , (v
=0 s°"+2‘2"+”f WP"(B’>+

+2(2n+1ga(2) lh( = ("n) (20.7)

As with (20.3), the equations (20.6) and (20.7) are used only for n < N,
and giy,,(z) and 8Gy.,,(z, v)/ox are neglected.

In order to obtain equations for the quantities on the right of (20.5),
we might multiply the equations (20.7) by F,(2v/v,—1) and integrate,
expressing the resulting integrals in terms of those appearing in (20.5).
However, this would be rather laborious, and an equivalent system of
equations can be much more simply obtained as follows. Kach term on
the right of (20.5) is a linear combination of the integrals

v,

j’" (v%)a Gulz, v)i—: = @G, () say, (20.8)
o

i.e. of the Mellin transforms of G,(x,v) with respect to ». Multiplying
(20.7) by v*/v*? and integrating over all v, putting

.

say, with a similar definition of «,,, etc., we find
(n+1)Gpy,,(2)+0G, o ,(2) 4 (204-1) ; oty Tngie-1(T)

= ; “aJGo.iﬂ—x(x) Son+2(2n4- l)kn,c ; ah.jGnJ+l—1(x) +

+2(2n+1)k,, 9?((“)) (20.10)
where :

8(8—2)...(a—n--2)
(6+1)(8+3)...(6+n+1)
(s—1)(8—3)...(6—n+2)
(34+2)(8+4)...(64-n4-1)
Similarly, (20.6) becomes

(- Dpa @+ 01(0)+ 201000 (o)
1 v '
- {(l—,(_vo)"'m)g"(“)“”o;“/.: Go.;(x)} Sone (20.6')

if n is even,

1
k,,= f P, (u) du = (20.11)
°

if n is odd.
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The system of equations (20.10) and (20.6’) involves more unknowns
than there are equations in the system, and none of the unknown
transforms can be neglected. However, we have not yet made use of the
assumption (20.5). In view of the orthogonality properties of Legendre
polynomials, this assumption is equivalent to the assumption that
G, (z,v) is orthogonal to all Fy114¢(20/vy—1) with &' > 0. Thus, if we put

F,(2v/vy=1) = ;Pu(”/”o)‘»
the assumption (20.5) is equivalent to
;ps+1+‘f" G”"(x) B 0 (8' == 0, l, 2,...). (20.12)

By supplementing (20.10) and (20.6') by a suitable number of the equa-
tions (20.12), we therefore obtain a system of equations whioh is striotly
equivalent to the one obtained by multiplying (20.7) by B(2v/vy—1)
and integrating. We call (20.12) the supplementary equationa,

The number of these equations needed for each n depends, of course,
on the order of the polynomials used to approximate to v/l..(v), v/l,(v),
etc. In the case where all the cross-sections follow the 1 /v law, the
equations (20.12) need be used only for s’ = 0, i.e. we use only

; Ps+1 Gn,t(x) =0.

In the Py(S2)Ps(v) approximation, we eliminate all G g41+¢(%) With
&' > O0by means of (20.12), obtaining a system of (N 4-1)(8-+2) equations
in the same number of unknowns g,(z) and G, (%), with 0 < n < N,

0 < & < 8. These equations can then be solved in the standard manner,
putting, say,

gnlz) = ; b [Af exp(@/L)+(—1)"A} exp(—z/L,)]
Gy () = ; By [Af exp(w/Ly)+(—1)"A] exp(—=/Ly)] |’

substituting into the equations, eliminating b, 4 8nd B, ., and thus
obtaining a determinantal equation for the permissible values of L, If
L, is a root of this equation, so is — L,

For other geometries, the expression [ 4+ exp(z/L;)+ A4 exp(—z/L,)]
in gy(2) and G, (x) must be replaced by ¢,(r), where (V?—1/L})$,(r) = 0,
with corresponding changes for n £ 0, while the L, are the same as for
the plane case. The boundary conditions must be satisfied by the g,
separately and by the G, , for each s < § separately. This follows from
the fact that the boundary conditions for the N, (,v) must be satisfied
for each v separately.

(20.13)
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Bince the order of the determinantal equation for the L, increases
rapidly as the order of approximation increases,t we are limited in
practice to fairly low orders of approximation, particularly since the
determinantal equation has complex roots in many cases, and the labour
needed to find a complex root is more than twice that needed to find a
real root. Fairly satisfactory results, however, are obtained even in
low-order approximations. For instance, it has been found that, if
v[li(v), v[l,(v), eto., are linear in v, and Gy(z,v) does not increase too
fast a8 v 0, the difference between the Py(R)F,(v) and Py(R)Py(v)
approximations is quite small, which indicates good convergence. It
has also been confirmed by direct comparison with the exact solutions
of (20.3) (where available) that tho Py (2)P,(v) approximation, or even
the Py(2)F(v), gives satisfactory results (Davison (13)).

20.3.3. The determinantal equation

In the above discussion we have referred to the determinant giving
L, as being of the order (N4-1)(S+2). However, the fact that the L,
appear in pairs of opposite sign suggests that it should be possible to
reduce this determinant by relatively simple means to one of half the
order, i.e. to one of order }(N-1)(8+2). This reduction is important,
because of the rate at which the numerical work necessary increases
with the order of the determinant. The reduction may be performed as
follows. Let §; be the assembly of all b, jand B, ,, for even n and given
J, and let v, be the corresponding assembly for odd n. The equations
which determine the b,, ; and the B, .5 (i.0. those obtained by substituting
(20.13) into (20.10), etc.) can be symbolically written

(l/Lj)"B(rf‘Q”u =0 }
(1/Lyyen+3%, =0

This follows since differentiation with respect to z in (20.10) is always
associated with a change in parity of the n-subscript. Multiplying the
first of (20.14) by P! and the second by -1, and eliminating v, say,

we have (1L}~ P26, = 0,

t The situation here appears leas favourable than in multi-group theory, since the
order of the determinant giving the values of L; depends on both S and N, whereas in
the multi-group theory spherical harmonics method it depended only on the number
of groups used, while the order of the approximation affected only the order of the
elements in the determinant (§ 19.5). In the latter case, however, scattering was taken
a8 isotropio in the L system. If the anisotropy is taken into account, the order of the
determinant in multi-group theory is equal to the number of groups multiplied by the
number of terms retained in the spherical harmonics expansion of f(§2'— ).

(20.14)
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and the equation for the L} thus becomes .
|1/L}—P-126-17| = 0. (20.15)
Bince the matrices B, Q, G, and T in (20.14) are clearly all of the order
$(N+1)(842), we have to deal only with matrices of this order, both in
obtaining (20.15) and in solving it. It may, of course, be necessary to

deal with matrices of order (N+1)(S+2), or even higher orders in more
general geometries, when we come to satisfy the boundary conditions.

20.4. Extensions and modifications of the method

20.4.1. The behaviour of the exact solution Jor small energies

Our description of the polynomial approximations method has so far
been limited to the case where

(1) it is & good approximation to assume that v/l (v), eto., are low-
order polynomials in v;

(2) the behaviour of I,,,(v), 1,(v), eto., as v — 0 is such as not to make
the @, (r,v) increase too fast as v - 0.

_Before discussing the modifications which are necessary when these
statements are not both valid, we shall find the behaviour of the @, (r, v)
a8 v - 0, which depends on that of l,(v), 1,(v), eto., in this region.

Since N(r,v,u) is not negative, none of the |@,(r,v)| can exceed
Go(r, v) for the same arguments, and it is therefore sufficient to examine
the behaviour of the latter quantity. Further, in problems with spectrum
regeneration we are chiefly interested in regions of space where the
neutron population is appreciable, and such regions will on the whole
lose by migration more neutrons than they gain. That is, G(r, v) cannot
increase, as v decreases, faster than it would in the absence of migration,
i.e. faster than the corresponding solution in an infinite medium in which
vis adjusted to make the infinite medium eritical and thus give a solution
independent of position. Thus, if the solution for this infinite medium is
Xy(v), we have, for all relevant regions of a finite spectrum-regenerating
system, the inequality

Gy(r,0) < Xy(o)(r), (20.16)
where ¢(r) is some bounded function of position. The inequality (20.186),
which we have derived by semi-intuitive means, can also be proved
rigorously; the proof, though too lengthy to be given here, is straight-
forward. For a single homogeneous spectrum-regenerating body, the
proof consists essentially in beginning the solution of the undistorted
system (20.3) (i.e. no G, neglected), and noting that any solution where
8 |G,(r,v)| exceeds G,(r,v) is inadmissible. For systems in which a
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spectrum-regenerating core is surrounded by slowing-down media, it
must be remembered that $(r) in (20.16) may decrease more slowly,
a8 |r| increases, than G,(r,v) for any v.

The determination of X(v) in (20.16) is simplified by the following
considerations. Since X,(v) is a solution, independent of position, in an
infinite medium, the corresponding angular distribution should be
isotropie, i.e. all the spherical harmonics above the first should be absent.
The equation for X (v), corresponding to (20.7), thus becomes

( l(v) l,(v))xo(v) %”—'+00mtant. (20.17)

It has this form, of course, only under the conditions of § 20.2.1, i.o. for
non-thermal neutrons in a mixture of (pseudo-) hydrogen and infinitely
heavy nuclei. We shall discuss in Chapter X XII the case where other
light nuclei are present; for the moment we keep to the conditions of

§20.2.1, so that (20.17) is valid. Converting the latter into a differential
equation and solving, we have

Ve
__ constant av’ 1/L(v")

Xolo) = o= 10) P [2 Y )= l/l,(v')] v < %o}

v (20.18)
This formula is, of course, valid only for v < v,; at v = Yo, X, is dis-
eontinuous, and for v > v, it vanishes.

In considering the behaviour of X(v) for small v, we do not need to
distinguish between captured neutrons and those which cause fission.
Accordingly, we put

1l(v)+1/1,(v) = 1/1,(v)
and use 1hot(8) = 1/1,(0)+ 1/ )+ 1/l,(0),
which follows from (1.7) and the notation of (20.2). We can then rewrite
(20.18) in the form

constant Fav 10" ,
L) = e i P[ v 171;(5—')11‘/l;'("v")] 0 <w). (20.18)

This_shows that, if the absorption cross-section varies as 1/v, and
1/l (v) < 1/L,(v) (i.e. the probability of absorption is never less than that
of scattering at (pseudo-) hydrogen), then X(v) is bounded as v — 0. If,
however, 1/I,(v) tends to zero as v — 0, while 1/],(v) tends to a finite
limit, then the expression (20.18’) clearly behaves as 1/v2. These are the
two extreme cases which are likely to be encountered in solving (20.17)

. with v/l;(v) and v/l (v) approximated by polynomials in v.
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Of course, since we are concerned with a numerioal method, the above
results are applicable only if all the coefficients in the polynomials
approximating v/l,(v) and v/l,(v) are of the same order of magnitude.
If some of the coefficients are very small compared with others, the
presence of the corresponding terms can have little effect in low-order
approximations, and the initial convergence is similar to what it would be
if those terms were absent. For instance, if 1/, = constant, 1[I, = /v,
where e <€ vy/l,, we have X4(0) = 0, but the behaviour of the low-order
approximations is much the same as if Xy(v) ~ 1/v* as v =+ 0,

20.4.2. The extension of the method to cases where low-energy neutrons

predominatet

Having examined the possiblo behaviour of Xy(v), and thus of G,(r, v),
a8 v— 0, we return to the polynomial approximations method. In
§20.3 we considered only cases where X (v) could be approximated by »
low-order polynomial in v, and this implied certain restriotions on its
behaviour as v - 0. For example, X, had to be integrable, and this will
not always be the case. However, it follows from formula (20.18') that
there is always a relatively small integer k such that v*X,, is integrable
and can be approximated by a polynomial of low order. Then (20.16)
implies that the v*G,(r, v) also can be approximated by such polynomials,
and it is reasonable to suppose that this approximation is uniform with
respect to r and ». -

If v*Q,(r,v), with k 3£ 0, is approximated by & low-order polynomial
in v, this simply means that the supplementary conditions (20.12) are
to be replaced by

; Pas14ws Gngra(r) = 0, (20.19)

and no other alteration is necessary in the method described in § 20.3.
If v* X ,(v) can be approximated by a polynomial of order § in v, then
v%+1X (v) can be approximated by one of order S--1, to at least the same
accuracy. The value of k in (20.19) can therefore always be increased
without affecting the validity of the method. However, we clearly wish
to take the smallest permissible value of k. We have indicated above
that the smallest value of k, such that v*X (v) is integrable, is probably
permissible. It may be argued that a smaller value still is permissible for
k, since in a finite system a rapid accumulation of slow neutrons at any
point will be prevented by migration, and that G(r,v) will therefore
increase more slowly than X,(v) when r is fixed and v tends to zero;
consequently, v*Gy(r, v) may be integrable for smaller k than v*X(v) is.
+ The results contained in §§ 20.4.2 and 20.4.3 are due to J. P. Elliott.
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However, it must be recalled that in the polynomial approximations
method the @, (r) are obtained as the solutions of certain differential
equations. If theee equations form a reasonable approximation at all,
they should do 80 for an infinite medium. In an infinite medium, on the
other hand, there are regions, for any v, where Gy(r, v) increases as fast
a8 X,(v). 1t is thus the behaviour of Xo(v) a8 v > 0, rather than that of
Go(r, v) for some r, which determines the lowest permissible value of %
in (20.19).

The above arguments are somewhat tentative, but the conclusions
have been completely confirmed by means of numerical examples For
& medium where X,(v) = 1/»2, for example, the polynomial approxima-
tions method with & = 2 in (20.19) gave satisfactory results and rapid
oonvergence. The use of k == 1 (too low a value, aoccording to the above
arguments) led to impossible results; although the medium was not
multiplying, the use of (20.19) with % == 1 led to periodic solutions.

The fact that the supplementary conditions (20.19) involve the
Mellin transforms @, ,(r) only for s > kimplies that in the Fy(v) approxi-
mation for each medium we should normally work in terms of the @, ,(r)
with k <8 < k+8. Those with 0 < 8 < k—1 will not be involved in
calculating the permissible L, (see (20.13)) and the form of ga(r),
G b(T)yeeey G g os(r). However, it may happen that, when these latter
have been determined, it is possible, by using (20.10), to find some of the
earlier @, ,, and in particular G, —o(r), for all n.

Although it is not always possible to determine all the earlier trans-
forms, it is always possible to find those needed to evaluate the integral

r Gy(r,v' )" dv’
f S (20.20)
0

vwhich appears in (20.8). This may be seen by considering that
0 < 1/l{v) < 1/l,(v), while

’. .
Xy(vyvdy
-—"W (20.21)

is the number of neutrons absorbed per unit time and volume when the
number of neutrons produced per unit time and volume is finite. Thus
(20.21) is finite, so that vX(v)/l(v) should be integrable over [0, v,).
. 8ince & is the lowest non-negative integer for which v*X,(v) is integrable
over this range, and v/l(v) is approximated by a polynomial in v, the
- index of the lowest power of v in this polynomial cannot be less than k,
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and the integral (20.20) is thus expressible in terms of @, x(T) Gopia(r),
eto., which are the transforms that can always be determined.

We now consider the boundary conditions. The boundary conditions
are evident (see §20.3.2) for free surfaces and for interfaces between
media where the value of kin (20, 19) is the same. It is therefore neocessary
to discuss only interfaces between media where the value of k and the
transforms involved are different on the two sides. As an example, let
us consider the plane case, with the interface at z = 0, and let the
values of k on the two sides of this plane be 0 and 2. That is, forz > 0
we work in terms of G, (), G, 1(2);..., Gy 5(2), and for < 0 in terms
of G, (%), G, 5(2),..., G, 5+2(%). If the equations (20.10) for z < 0 do not
lead to a finite @, ,(2) for all n, the normal proocedure would be to find
Gpg41(0+) and Gp9+1(0+) in terms of G o(0+), Gpy(0+),.., G g(0+)
by means of the supplementary equations (20.12) for z > 0, and then to
equate @, ,(0+) to G, A(0—) for s = 2,3,..., 842, If however, the
equations (20.10) for z < 0 allow us to determine G,1(x), & better
approximation is obtained by determining @, ,(0—) from these equations
and equating @, ,(0~) and G, ,(0+) for s = 1,2,..., 8+1, disregarding
the available value of @, 543(0—), which is now superfluous. This ex-
ample makes clear the procedure in other cases.

In the above formulation of the boundary conditions, we have treated
all » in the same way, by using the same set of Mellin transforms for each
spherical harmonic moment @G, (r,v). This is done, however, simply for
oonvenience, and is not related to any considerations of convergence,

20.4.3. The modification of the method to take account of thermal

neulrons : :

We have so far been concerned with the solution of equation (20.2),
but this equation itself involves certain approximations. In particular,
we have used the scattering law (20.1) for all energies in the derivation of
(20.2), whereas it is in fact a fair approximation only for non-thermal
neutrons. For thermal neutrons, the scattering law is appreciably
altered by the effects of the thermal motion and of the molecular binding,
The term corresponding to scattering by light nuclei can thus no longer
be expected to have the same form. When thermal neutrons are of
importance, equation (20.2) has therefore to be modified, and in the
Present section we shall extend the polynomial approximations method
to deal with equation (20.2) 8o modified. In doing so, however, we shall
not attempt to represent the scattering of thermal neutrons with great
accuracy, but simply use a modification which is at least in the right
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direction. This consists in introducing a velocity v* called the upper limit
. of the spread of thermal neutrons, and assuming that for o’ > v* (20.1) is

still valid, whilst for v’ < v* the light nuclei scatter in the same way as
the heavy nuclei, i.e. elastically and isotropically in the L system.
Physically, this corresponds to the assumption that for ' < v* the
neutrons are scattered not by individual nuclei but by molecules which
are regarded as rigid and infinitely heavy, while for o' > v* the neutrons
are scattered by free nuclei. Since the scattering cross-section of a
fully bound nucleus is different from that of the same nucleus when free,
we treat the scattering mean free path for light nuclei as changing
discontinuously at v = v*. We therefore adopt different notations for
the mean free path according as v > v* or not. Again considering the
case of peeudo-hydrogen, we call the mean free path I, for v < v*,
retaining the notation I,(v) for v > v*.

The only modification needed in (20.2) in this approximation is to
replace the last term by

;‘1. _LU 1%()%?_;5)2_')8(;_ 9-9’) dv’dﬂ’+‘§£§;d'(:v')’—) ” N(r,vQ') dQ",

where S(*—v) =1ifv*>v, 0ifv* <w.

We call the modified form of equation (20.2) ‘(20.2'y",

Transforming this equation in the same way as we did (20.2), but
replacing (20.4) by

No(r,0) = go(£)8(v—0;)+ G, (r, v)+ H, (1, v) (20.22)
say, where

G,(r,v) = 0 for v < v*, H,(r,v) = 0 for v > v*,

and again taking the plane case for simplicity, we see that g,(z) and
G, (2, v) satisfy the same equations (20.6) and (20.7) as befors, except
that we replace o

f olx, v v’ dv'

0

G

Lv')

(20.23)

: r Golz, v’V dv' r Hy(z,v' ) dv’
in (20.6) by o of oI
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Also, equations (20.7) are valid only for v* < v < v,, while the equations
for H,(x,v) are

oH, . (z,v) oH, _(z,v)  (2n+41)
R L WO

(i1 Bt oo (v
= [le(v>+zd<v>] Bl 0) don+ =0 n = 0, "(”o)-'-

H,(z,v)

+2(2n+1) f %%P,,(%’;) A (v <v¥). (20.24)

It must be noticed that the thermal scattering law assumed in (20.2') is
too crude to give the actual spectrum of thermal neutrons. We can hope
to obtain with fair accuracy only the distribution in space and angle of
the thermal neutrons. This means that we are not interested in the
solution of equations (20.24) as they stand, but only in that of a reduced
system from which the energy dependence has been eliminated. Tho
spectrum of thermal neutrons is roughly a Maxwellian. It is thus
independent of position, and we may assume it to be independent of
direction also. This is equivalent to putting

. H,(z,v) = h,(z)F(v) (20.25)
say, where F(v) is the same for all n. Normalizing F(v) by the condition

j.vF(v) dy = v}

and putting as in §4.4 (20.26)

A = [ 0 do Fo)fhu(s), et
L]

we oan clearly regard Ify, I}, etc., as the thermal mean free paths for the
corresponding processes. Multiplying (20.24) by v, integrating from
v == 0 to v = v* and using (20.25) and (20.26), we obtain

(1) 4y (%) ki () (270 1)h (2) /By
= (134 1/I2)ho(z) 80+
vy -

2241l polo*looan(e) b+ | "—%:%;—"’p,.('-’;)dv}. (20.27)

where p,(a) = TP,,(y)y dy, P,(y) being a Legendre polynomial, and tho
°
second term in (20.23) is given by
vgho()/17 .
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. Thus, instead of solving the system of integro-differential equations
: (20.24), we need only solve the system of ordinary differential equations
" (20.27). It remains to reduce the equations for G,(x,v) to a system of
- ordinary differential equations in 2. To do 80, we can again apply
. polynomial approximations. Since the equations for the @,(r,v) are

the same as in the preceding section, the behaviour of G, (z,v) for small
~ 9fv,is also the same. Since v* < v,, the conditions for the applicability
- of low-order polynomials in the range v* < v < v, should be much the

same a8 in the range 0 < v < v,. Thus it is again v*G,(z, v) rather than
" @,(2,v) which can be approximated by a low-order polynomial, and the
- value of k in each medium is the same as in§20.4.2. In the Py(v) approxi-
mation, we should therefore put

1 &
Cul2,0) = o z B (W, (20.28)

i=o
The similarity to the preceding section suggests that, now that (20.7)

holds only for v* < v < v,, the best procedure is to use the incomplete
Mellin transforms defined by

"
G ulzlv*[og) = [ (900G, (2, v) dv],. (20.29)
'.
The basic differential equations governing these incomplete transforms
are obtained in the same manner as (20.10), i.e. by multiplying (20.7) by
(v/vo)*[v,, integrating over v from v* to v,, and expressing the resulting
* integrals in terms of the quantities (20.29). However, to express

f v\*dv f'G,‘(x, v') dv'P v
vl o | el
Yo Y v'l(v) v
v* v

in terms of the quantities (20.29) requires more of the latter than when
v* = 0, and in particular some @, J(x|v*/vy) for negative s. If we write
the supplementary equations obtained from (20.28) in the form

Zpﬂﬂw.l(%s) Grpil@lo*fog) =0 (s =0,1,..),  (20.30)
r

which is strictly analogous to (20.19), with p, 4(v*[v,) the coefficients of
the expansion of P[(2v—v*—v,)/(v,—v*)] in powers of v/vy, the condi-
- tions (20.30) will not be sufficient to eliminate the incomplete Mellin

transforms for 8 < k. However, for v* > 0 the relations (20.30) are not
" the only ones which can be derived from (20.28). On the contrary, any
* number can be derived, since for v* % 0 any power of v can itself be
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expanded in a convergent series of polynomials orthogonal in [v*, v,].
The general procedure is to eliminate the S-1 coefficients a,, () between
the equations obtained by substituting (20.28) into (20.29), and to
express the G, (z|v*/v,) for 8 < 0 and s > § in terms of those for
0<8< 8. Fork = 0and s > S, we obtain (20.30), but for s < 0 we
get the further supplementary conditions required.

Combining these with the differential equations, discussed above, for
the incomplete Mellin transforms, (20.27), and (20.6) modified as shown
in (20.23), we have in the Py(S2)Py(v) approximation a system of
(N+1)(8+3) equations in the same number of unknowns, and these
can be solved in the ordinary way.

Whereas, in the method of § 20.4.2, different sets of Mellin transforms
were used in different media, here we use the same set of incompleto
transforms in each medium. The difference is due to the fact that in
§20.4.2 it was necessary to ensure the convergence of the transforms by
eliminating all quantities sensitive to the behaviour of the slow neutrons,
whereas the incomplete Mellin transforms converge for all s, The
quantities previously eliminated could thus be retained, and indeed our
purpose was to take more accurate account of the slow neutrons.

The modification given in this section can also be used to determine
the spectrum of non-thermal neutrons. Once the 7a(%) have been deter-
mined, we have no further interest in the H,(z,v), and are consequently
no longer restricted to a particular interpretation of v*. We ocan first
solve the problem with v* equal to the upper limit of the spread of thermal
neutronsand find theg,(z). Then, treating these g, () as previously given,
We can vary v* 8o a8 to lie anywhere in the non-thermal region. Differen-
tiating the resulting expressions for G, o(x|v*[v,) with respect to v* and
using (20.29), we find the solution for @,(z,v). This procedure has been
carried out and, despite the additional error due to the numerical
differentiation, the results are quite satisfactory, even in approximations
of fairly low order.



XXI
FEYNMAN’S METHOD

21.1. A single homogeneous body with isotropic scattering
21.1.1. General outline of the method
Iw the preceding two chapters we have discussed methods which were
based on simplifying assumptions about the energy variation of the
cross-sections present in the system. The present chapter is concerned
with an approach whereby no restriction need be placed on the cross-
sections in one of the media, although at the cost of rather drastio
restrictions on the oross-sections in the other media, if any. Of course,
although no restriction is necessary in the case of the selected medium,
it is customary to approximate the cross-sections in some way, in order
to reduce the amount of numerical work involved. The method in
question is due to Feynman (unpublished).
* ~ We start with a single homogeneous body, which may be re-entrant.
The basis of Feynman’s method is the integral equation rather than
the integro-differential equation, and the integral equation for the
neutron emission density @(r,v) given by (2.31), rather than that for the
neutron distribution N(r,vQ). Since the integral equation in question
'~ is much simpler when the scattering is isotropic in the L system, we

start by considering this case. The equation to be solved for the neutron
emission density Q(r,v) is then

Q(r,v) = Z"-:-’ f I f lrd—Vr' i f dv’ l:?(’v)’) J (v’ = v)exp[ —7,(r, r")]Q(r, ')
(21.1)
(see (2.32)), where i(v), c(v), and f(v’ - v) are the same throughout
the system, and we have written exp[—r,(r, r')] rather than
exp]— [r—r’|/lii(v’)] only because the body may be re-entrant. The
parameter y is introduced so that we shall be able to consider the problem
a8 an eigenvalue problem under variable composition (see § 3.5).
The basic idea of Feynman’s method is as follows. Suppose that for
every v we have solved the one-group theory problem, for the body of
* the specified shape and dimensions, in which I = I(v) (i.e. the assumed
- energy-independent mean free path in the one-group problem is equal to
- the actual mean free path for the velocity v), while ¢ is a variable para-
meter. The auxiliary one-group problem is thus also an eigenvalue

|
J
/J
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problem under variable composition. Let ¢,(v) be the eigenvalues of this
auxiliary problem and p,(r|v) the corresponding eigenfunotions, ie.

av’
porio) = 200 [ [ [ 2 expl =yt Oleyte o). (21.2)

For any fixed v, the cigenfunctions py(riv) are mutually orthogonal (see
(4.30)), and Q(r, v) can thus be expanded in terms of these eigenfunctions

for each v. The coefficients in the expansion depend, of course, on v, so
that the expansion has the form

Q(r,v) = ; P4(v)py(r|v). (21.3)
Substituting into (21.1) and using (21.2), we easily obtain
; 2;(v)p,(r|v)

=3 [ wnnsw >0 0 [ [ 2 epyterv

X exp[ —7y(r, r')]

- ' (6" £ (o V) o rlon): )
=v 3, [ a0 > 0 Lyt (21.4)

multiplying (21.4) by p,(r|v) and integrating over the volume of the
body, and assuming that the p,(r|v) have been normalized by the condition

[[] piiriopsirio) av = 5, (2L.5)

we have

20) =7 3. [ w1 > 0) 220
2

( )A,'..’(v' -> v), (21.6)

where we have put for brevity

Apaslt’ > 0) = [[[ pylxlo)esiriv) V. (21.7)

The solution of the integral equation (21.1) in velocity and position has
thus been reduced to that of a system of integral equations in the velocity
alone, whilst the shape and dimensions of the body appear in this system
only through the coefficients Apoy(v' > v) and ¢,(v).

It may be noted in passing that, in deriving the equation (21.4), we
have used the fact that the kernel of (21.1) contains T4(r, r') rather than

7,(r,r’). This is why we had to start from the integral equation for
Q(r, v) rather than that for n(r,v). To use the latter would haveled toa
much more involved system of equations than (21.6).
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21.1.2. The coefficients A,..,(v" -+ v) in (21.6)

Before proceeding with the solution of the equations (21.6), we shall
examine the way in which the coefficients A,.4(v" - v) depend on j, §’,
o, and v’. For simplicity, we first assume that the body is non-re-entrant
and very large compared with the total mean free paths involved, i.e.

a > max,l, . (v), (21.8)
where a is a characteristio dimension of the body. If (21.8) holds, we
may use the diffusion approximation to determine pys(r|v) forany j and v,
i.e. py(r|v) may be taken as the solution of the differential equation

(V3—1/L(v))p,(r|v) = 0 (21.9)
which vanishes at a distance

2[0;(0), Loy (0)] 2 0-Tlyoy(v)cy(v)

beyond the surface; see (8.11), recalling that the body is for the moment
assumed non-re-entrant, so that the surface is free, and see also (6.29).

In (21.9), L,(v) is, of course, a variable parameter, because ¢,(v) is one
in (21.2).

If (21.8) is satisfied, then so is

a > ma'xl.v 20[61(0), ltot(v)]’

and we can neglect 2, in comparison with the dimensions of the body,
regarding p,(r|v) as vanishing at the surface of the body. The boundary
conditions for the solution of (21.9) then become independent of the
velocity, and L,(v) will also be independent of the velocity, since it is a
varisble parameter which is required to be an eigenvalue. In thia
approximation, therefore, p,(r|v) willitself be independent of the velocity,
and, according to (21.5), (21.7) then gives

‘ Apss(v' > v) = 3y, (21.10)

The restriction that the body is non-re-entrant was introduced only
to simplify the boundary conditions, and the result is true independently
of this assumption. Thus (21.10) holds whenever (21.8) is satisfied. In
actual applications, (21.8) will not in general be satisied, so that 2z, cannot
be neglected in comparison with the dimensions of the body, and the
body may be so small that even the use of the diffusion approximation
is doubtful. However, it is fairly evident that, even when a is comparable
with the values of [, ,(v) involved, p4(riv) for a given j will not be very
sensitive to the value of v. Thus, although (21.10) will not generally be
true, we can put

Apof' > 0) = gt edp (v > v) (21.11)

say, where ed._, (v’ - v) is a small perturbation.
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21.1.3, The energy-dependent factors pyv) - : o
By the use of the usual technique of perturbation, with (21.11) and

p,(v)~=§o¢'p,.(v). y = .ff:oey,, (21.12)

we can easily reduce the solution of the system (21.8) to the solution of

one equation at a time. Substituting (21.11) and (21.12) into (21.6) and
collecting first the terms independent of e, we obtain

DPyo(v) = 9, f Dyolv") ;((—':,)5 S —>v)dv', A(21‘.l3)

Let yq,4, be the kth eigenvalue of the Jjth equation (21.13), and let DPioi(v)
be the corresponding eigenfunction. It will be recalled that our real
interest is in the lowest eigenvalue of y. According to the definition of
¢4(v), the emallest c,(v) for a given v is ¢,(v). We thus see that Yo,00 i8 the
smallest v, ., 8o that v, = Yo00- That is, y, is the lowest eigenvalue of

Pult) = 0 [ Pl el Vol NSO > o) dv,  (21.14)

and p,, is the corresponding eigenfunction. Since this Yo i8 not an eigen-
value of any of the equations (21.13) with J 2 1, we clearly have

Dy(v) =0 forj>1. (21.15)
Collecting now the terms of the first order in e in (21.8), we obtain
Par(t) = 70 [ Pulv’Yelv')eolo )}/ (0" > v) do’ +
+71 [ Pol0HeloVieoo )} (v" > v) do’ +

+70 [ Pl Nelw)eoo 17 (0" > 0)oag(v’ > ) do'  (21.16)
and

P®) = o [ 2 et)ief0)}f (v > v) o’ +
70 [ Pool® el e o > 0} > 0) d6* (5 1). (21.17)

Since y, is the eigenvalue of the homogeneous equation corresponding to
(21.18), the free term of the latter equation should be orthogonal to the
solution pf,(v) of the adjoint homogeneous equation

2hlo) = {roc(oeov)} [ pla(v)f (v > o) v,

350690 X
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which, nsmg (21.14), gives
11 = =1 [[ PooltNetw )o@ 0" > 0)graalt” > v)plolo) dv'de] -
-—:-[jpoo(v)p;',o(v) dv]. (21.18)

Using this value of y,, we can solve equation (21.16) by Neumann series.
¥, i8 not an eigenvalue of any of the equations (21.17), and therefore
each of them can be solved by Neumann series. When p,(v) and
P5(v) have been determined, the terms of order €? in (21.8) can be
collected, and so on.

The method of solving (21.14), (21.186), (21.17), etc., which is adopted
in practical applications depends largely on the actual form of f(v' —v),
¢(v), and c,(v). When the assumptions of multi-group theory are satisfied,
the integral equations (21.14), (21.18), etc., reduce to linear algebraic
equations. It has been pointed out by Woodcock (57) that, since
¢.4',._.,(v' - v) in (21.11) is usually very small, it is often advantageous,
in oases where both the multi-group theory and Foynman’s method are
applicable, to start as in the latter method and use the assumptions of
multi-group theory only for the solution of (21.14), (21.18), etc. This
remark is particularly important when the number of groups is relatively
large (of the order of ten or more), since the direct application of multi-
group theory as described in Chapter XIX is then prohibitively laborious.

Where the assumptions of multi-group theory are inapplicable, other
simplifications of equations (21.14), etc., are often possible. We shall not
describe these here, but their nature will be fairly apparent from our
discussion of a closely related integral equation in § 22.2.

To conclude our examination of equation (21.6), we must mention an
evident but important corollary. If I, is independent of v, then all the
p4(riv) defined by (21.2) are independent of v also. The term ed, (v >v)
therefore vanishes, and (21.15) shows that then all the p,(v) vanish for
j # 0. The series (21.3) thus reduces to

Q(r, v) = Po(v)py(r)- (21.3")
Comparing this with (2.38) for 1., independent of v, we see that
n(r, v) = Fo(v)p(r). (21.37)

Since py(r) is determined from the constant cross-section approximation
with a suitable value of ¢, we see that the spatial distribution of neutrons
can be determined by the constant cross-section approximation, whether
c(v) ts constant or not, for bare bodies (i.e. single media) where l,,(v) is
constant. If c(v) is not a constant, a suitably chosen weighted average
¢ is used. This is found from (21.14) if f(v' —>v) is known.
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21.1.4. The critical-size problem -

Hitherto we have considered the problem of the eigenvalues of (21.1)
under variable composition. In practice, we are much more frequently
interested in the problem of critical size. The preceding analysis, however
shows at once how to apply Feynman’s method to the latter problem.
To determine the critical value of the characteristic dimension a for a
body of fixed shape and composition, we take a set of trial values of a
and find the corresponding y(a) as above. The critical value of ¢ is then

the solution of ya) = 1. ‘

21.1.5. A remark on the solution of the auxiliary one-group problem
Before extending Feynman’s method to more complicated systems,
we shall add some comments on the practical application of the method.
It has been assumed in the analysis of § 21.1.1 that the eigenvalues and
eigenfunctions of (21.2) are found exactly. This will not be so in practioce,
and approximate eigenfunctions must be used for the p,(r|v). Whereas
the exact eigenfunctions of (21.2) for a given v are mutually orthogonal,
we know that only some of the approximate methods preserve this
property, while others lead to approximate eigenfunctions which are not
mutually orthogonal (see § 8.8, for example). The derivation of (21.6),
however, depends on the orthogonality of the p,(r|v) for a given v. Thus,
without altering the entire method to take account of deviations from
orthogonality, we can use only those approximate solutions of (21.2)
which preserve this property, even though they may be inferior in other
respects. For instance, if we wish to use the diffusion approximation
with the boundary condition (8.11), we must take the same value
2o = 0-T104l, () (21.19)
for zy, whatever the value of ¢,(v), since the more accurate form (6.29)
would make the resulting eigenfunctions no longer orthogonal; further-
more, even with (21.19), the eigenfunctions are orthogonal only when
integrated over the extrapolated volume of the body, and this must be
taken into account in evaluating the normalization factor in p,(r|v) and
the integrals 4,._,;(v' - v). The Serber-Wilson method is inapplicable
for our present purpose, for the same reason. Thus the more acourate
of the simple approximations cannot be used to solve (21.2), and it is
necessary either to use the less accurate versions (e.g. replacing (6.29)
by (21.19)) or to pass to the more powerful but more laborious methods,
such as the spherical harmonics method. (We have proved in § 10.6 that
the spherical harmonics method preserves the orthogonality of the
approximate eigenfunctions.)



308 FEYNMAN'’S METHOD XX1, 82

21.2. A reactive core in an elastically scattering reflector

21.2.1. Formulation of the problem '

Having described Feynman’s method for the case of a single homo-
geneous body, we now turn to problems where the system consists of
two or more media. In the present section, we take the case where
neutron collisions can result in a change of energy in only one of the
media, whilst collisions in the other media can result only in either
capture, or scattering elastic in the L system. We call the former medium
the core and the other media the reflector. The case considered in this
section is thus that of a reflector which scatters only elastically. For

the moment we shall continue to assume that all scatterin
in the L system, 8o that

JR > o) = (1/4m)f (o’ > 1)
FV'Q > vQ) = (1/4m)3(v'—v) }
and the second formula is valid throughout the reflector. The form of
(v) and of l(v) will, in general, be different for core and reflector, and for
different parts of the reflector if it contains more than one medium,

In order to extend to this case the method developed in the preceding
section of this chapter, it is nécessary to introduce an auxiliary function
K(r,r’|v), which gives the probability per unit volume that a neutron
starting at the point r’ in the core, with velocity v, will have its next
collision, in the core, at the point r. That is, K (r,r’|v) is the neutron
flux at r due to an isotropic point source of unit strength at r’, in a
fictitious system where the properties of the reflector are the same as for
the actual system, whilst in the core ¢(v) becomes zero and l(v) is un-
changed; the points r and r’ are both in the core. Using this interpreta-
tion of K(r,r’|v) and the optical reciprocity theorem (see (4.26)), we
see that K(r,r'|v) is symmetrical in r and r’, i.e.

K(r,r'|v) = K(r’, r|v). (21.21)
The auxiliary function K(r, r’|v) is needed only for the analysis; it does
not have to be evaluated explicitly. In the absence of the reflector it
reduoes to {1/1(e) e —r'|Joxp[— r,(r, 1')].

The equation for the neutron emission density Q(r, v) can be rewritten,
in terms of the function K(r,r’|v), so as to involve integration over the
oore only. If Q(r,v)is the neutron emission density, i.e. Q(r’,v")dV’ dv’
is the number of neutrons generated (in fission or scattering) per unit

g is isotropic

(21.20)

t Here, and throughout Chapter XXI, elgatic scattering means scattering elastio in
the L system, that is, the medium concerned is composed of heavy nuoclei only,
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time in the volume element ¥’ of the core and the velocity interval from
v’ t0 v'4-dv’, then the number of neutrons of velocity v’ to v’ +dv’ which
undergo collisions in the volume element dV of the core is

dv dv’ f f f K(r, v [v)Q(r',v") dV".

The number of neutrons generated (in fission or scattering) per unit time
in the volume element dV of the core and the velocity interval from v
to v+dv, i.e. Q(r,v) dV dv, is thus

v dv 4_‘; f o(0)f (¢ > v) do’ J' f f E(r,r'lv)Q(, ') dV".
ocore
Cancelling the differentials, we have

Qr, v) = % f (W) (0" > v) dv’ f f J' K(r, e 1v)Q(r", ') dV”

. for r in the core. (2A1.22)
Thus equation (21.22) is strictly equivalent to our previous equation
_ 1 [e(o)Vf (v >v)dv' f J‘ av’ _ , ;L
Q) = o [ [ 3Vt 0, )
sysiem (21.23)
(see (2.32)). The subscript r in c,(v'), eto. (not to be confused with
for reflector), is here introduced to distinguish quantities belonging to
different media. It was unnecessary in (21.22), since it was obvious that
only quantities belonging to the core could appear there.
In what follows, we shall introduce the factor y into equation (21.22),

as we did for equation (21.1), s0 as to be able to deal with the problem
of eigenvalues under variable composition:

Q) =2 f o) f @' - v) dv f f f K(r,r'|v)Q(r', v') dV".
core (21.22")
The corresponding change in (21.23) is to introduce the factor y(r), where

(r) = y for r in the core,
YW= forrin the reflector.

21.2.2. The application of the eigenfunction expansion

We now proceed as in §21.1.1. That is, we consider a fictitious one-
group problem in which ¢ and 1, in the reflector, and lios in the core,
have the same values as in the actual system for neutrons of veloeity v,
while the value of ¢ in the core is & variable parameter which is to be an
eigenvalue. Let c,(v) be the jth eigenvalue and ps(r|v) the corresponding
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eigenfunction for the neutron flux. Like the equation for @(r,v), the
equation for p,(r|v) can be written in two alternative forms, namely

pirlv) = 94(7”) f f f K(r,r'[v)p,(r'|v) dV" for r in the core

core (21.24)
and

oel®) B o v
pirle) = o f f f Lo e expl (e ] s (21.25)
where ,

__{es{v) for r’ in the core,
6.r(v) = c(v) for r’ in the reflector.

The equivalence of the equations (21.24) and (21.25) can easily be
established as for (21.22) and (21.23).

Since the values of ¢ in the reflector are fixed for a given », only the
value of ¢ in the core being variable, the orthogonality relation (4.30)

gives [eyto)—cs0)] [ [ [ puteiolpyeio) a¥ = o,

or, with suitable normalization,
f f f Py 0)ps(r|v) AV = By (21.26)
©core

Then, for r in the core, Q(r,v) can be expanded in terms of these p,(r|v)
in a series of the same form (21.3) as before. Substituting this series into
(21.22’), we obtain the same equation (21.8) for p,(v) as before, except
that in the definition (21.7) of 4,_,,(v' — v) the integration extends over
the core only.

Since the equations (21.25) are strictly equivalent to (21.24), the
quantities ¢,(v), py(r|v), and consequently 4,._,,(v' - v), can be found by
solving (21.25), without using (21.24). It is therefore unnecessary to
know K(r,r'|v) explicitly, as has been remarked above. The arguments
of §21.1.2 can then be applied, leading to the same conclusion (21.11),
and the equations (21.6) can thus be solved as before (see § 21.1.3).

21.3. An inelastically scattering reflector

Whereas the application of Feynman’s method to the systems con-
sidered in §§21.1 and 21.2 is fairly simple, and its convenience and
accuracy have been well confirmed for these cases, there is as yet no
completely satisfactory extension of this method to systems where
changes in the neutron energy can occur in more than one medium.
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There have, however, been several attempts to make such an extension
and we shall describe below the method proposed by Fuchs (unpublished),
giving also its limitations.

We assume that there are only two media in the system, which we call
the core and the reflector, in either of which a neutron may change its
energy. Both media are assumed to be of finite extent, with scattering
isotropic in the L system.

The procedure is at first similar to that in § 21.2. As a generalization
of the auxiliary function K(r, r'|v), we introduce K(r’ — r|v’ - v), defined
as the probability, per unit volume and velocity interval, that a neutron
generated at a point 1’ in the core with velocity v’ has its first collision,
in the core, at r with velocity v. That is, K(r’' -+ r|v’ - v) is the density
at r of neutrons with velocity v due to a point source of unit strength at
r’ which emits neutrons of volocity v’ only, in u fictitious systom whero
the reflector proportios are the same as in the actual system, while in tho
oore Ly (v) is unchanged and c(v) is zero; the points r and r’ are both in
the core.

If the reflector cannot scatter inelastically, i.e. if we return to the
case of §21.2, the function K(r’ - r|v’ - v) clearly reduces to

K(r,r'|v)3(v' —v).

The equation governing the neutron emission density can now be
rewritten as

Q(r,v) = 4—11; f c(v")f(v" > v) dv" J. av’ '”‘J- K(r' > rjv’ > v") X

X Q(r’,v’) dV’ (r in the core), (21.27)
the proof being similar to that of (21.22).

We also introduce the corresponding auxiliary function for the
reflector, K(r’ — r|v’ - v), defined in the same way except that the core
and the reflector are interchanged. That is, E(x' > r|v'—>v) is the
density at r of neutrons of velocity v, etc., in a fictitious system where
the core properties are the same as in the actual system, while in the
reflector lyy(v) is unchanged and c(v) is zero; the points r and r’ are both
in the reflector. The equation governing the neutron emission density
can be rewritten as

Qr,v) = 741; J c(@")f (" > v) dv* f dv’ -”.J‘ R’ > r|v' > v")X
refl

X Q(r',v') dV’ (r in the reflector), (21.28)
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where the reflector values of ¢(v”) and of f (v" > v) are used, instead of the
oore values as in (21.27). In what follows, we shall introduce the factor
¥ into equation (21.28), as with (21.1) and (21.22"):

Q(r,v)

= {; f c(v")f(v" > v) dv* f dv' ffJ. R’ >y’ = v")Q(r, v')dy’.
ron (21.28")

Let us suppose that we have solved an auxiliary problem where the
oore properties are the same as in the actual case, whilst all scattering
in the reflector is regarded as elastio in the I, system, and the number
of secondaries per collision in the reflector is yc(v), ¢(v) being the actual
number of secondaries and X & variable parameter, Let x; be the jth
eigenvalue of this parameter, and #4(r, v) the corresponding solution for
the neutron emission density. The equation satisfied by ¢,(r,v) can be
written down as follows in terms of R(x' - rjv’ - v):

HilE,0)= "Qf;(T") f L f f f R(x' > rlv’ > v)py(r', v') aV"’
refl

(r in the reflector). (21.29)

Since both media are finite, the x; form a discrete set. We also suppose
solved the corresponding adjoint equation

#ir,0) = X f ov') dv’ f f f R(r>r'jo > v')g)(r', o') AV
refl (r in the reflector). (21.30)

Since ¢,(r, v) refers to a problem in which the reflector does not scatter
inelastically, the determination of X; and of ¢,(r,v) in the core can be
carried out by the method of §21.2, except that all the eigenvalues are
now needed, and not only the lowest one. When ¢4(r, v) has been deter-
mined in the core, its values in the reflector for each J can be obtained by
the solution of a one-group problem. The solution of an adjoint equation
can always be obtained in essentially the same way as that of the original
equation. The solution of (21.30) therefore offers no further difficulties.

It can easily be proved in the usual manner that the ¢,(r, ) and the
é}(r,v) form a biorthogonal set, and we shall normalize them so that

f dv f f f 4T, 0)}(r,0) AV = 5,,.. (21.31)
refl

We now assume that the ¢4(r,v) form a complete et in the reflector
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region of the four-dimensional (r,v) space, and expand @(r, v) in terms
of the ¢,(r, v), putting

Q(rn 1)) = ’zgj ¢j(r’ ”): (21'32)

where the g; are constant, unlike the ; of (21.3).
Substituting (21.32) into (21.28') and using (21.29), we obtain

Soubiro=y> ’;‘;L: f F(0" > v),(r,v") do* (r in the reflector),
<

and hence, using the orthogonality relations (21.31), we find the system
of equations

g,='y’z’;%: f f dodv"f (v" ~ v) f f f $4(r, v")g}(r, v) AV (21.3)

for the coefficients g,. The value of yisdetermined by the condition that this
system of equations has a solution which is non-trivial, The adaptation
of this procedure to the case where the critical size is required is evident.

This method remains only an attempt to extend Feynman’s, on account
of a number of weaknesses in it. Mathematically, its weakness lies in the
fact that there is as yet little evidence that the #4(r, v) form a complete
set. In practice, a serious defect of the method is that, even if the series
(21.32) converges fairly rapidly, it is still necessary to solve a large
nunmber of auxiliary problems before the result is obtained, and this
means that the numerical work involved will be considerable, Further-
more, if the ¢,(r, v) do form a complete set, for the reflector region of the
four-dimensional space, the eigenvalues y; should increase very slowly
with j, and thus it would be expected that quite a large number of terms
would be needed in (21.32) in order to obtain reasonable acouracy. For
these reasons, the above extension of Feynman’s method has seldom,
if at all, been applied, although it was suggested some years ago. The
generalization of Fuchs’s method to systems of more than two media is
evident. It is plain that the addition of media where the neutrons can
change their energy will significantly increase the amount of numerical
work required.

The analysis in the present section is based on the equation (21.28), so
that in the auxiliary problem of determining ¢,(r, v) the core properties
were unchanged, while the reflector was replaced by one in which the
neutrons cannot change their energy. It might seem at first sight that
we might alternatively have based the analysis on equation (21.27), and
determined ¢,(r,v) from an auxiliary problem in which the reflector
properties are unchanged, while the core is replaced by one in which the
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neutrons cannot change their energy. However, it is generally the case
that the reflector contains no fissile material, so that the neutrons can

lose, but not gain, energy there. If, therefore, the reflector is left un-
changed, while the core becomes elastically scattering only, the result is a
slowing down problem, and not one with spectrum regeneration. Insuch
& system, the eigenvalue problem defining ¢,(r,v) has no solution; the
set of the ¢,(r, v) will be empty, and therefore not complete. This is why
we must start from (21.28) and not (21.27). If the reflector is spectrum-
regenerating and the neutrons cannot lose energy in the core, then we
should, of course, start from (21.27).f If both media are spectrum-
regenerating, either equation can be used, while if neutrons cannot lose
energy in the core and cannot gain it in the reflector, neither procedure is
possible and Feynman’s method in its present form is inapplicable. It
follows from these remarks that, even if the functions ¢,(r,v) form a
complete set for some system, they will not always do so; indeed, a

system can be found for which the set of the ¢,(r, v) is not complete, but
empty.

21.4. Feynman's method for anisotropic scattering

21.4.1. The case of a bare slab. Transformation of the equations

In the preceding analysis, we have assumed the scattering to be
isotropic in the L system. Davison (11) has suggested an extension of
the method to the case where the scattering is anisotropic. We begin
by describing this extension for a bare infinite plane slab, i.e. a single
“homogeneous body having plane symmetry. In§ 21.4.4 we consider the
cases of single homogeneous bodies of other shapes, and of bodies in
reflectors which do not scatter inelastically.

‘When the scattering is anisotropic, the neutron emission is also aniso-
tropic, and the neutron emission density Q(r,v) must now be replaced
by the neutron emission angular distribution Q(r,vQ). The integral
equation satisfied by the latter quantity has been mentioned, though
not written down, in § 2.7. It may be easily obtained by means of the
arguments of §§ 2.4 and 2.5, or, where the body is not single, homogencous,
and non-re-entrant, of § 2.6,

The neutron emission angular distribution is clearly the right side of
the Boltzmann equation (2.4'), so that (2.31) must now be replaced by

Q(r,vR) = f | f ' dQ W e )l W IN(E, V' Q) f ('R > vR).  (21.34)

t If neutrons cannot lose energy in some medium, then the eigenfunctions of (18.3),
if any, are proportional to 3(v—v,,,), and these clearly cannot form a complete set.
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The sourco term is omitted, since we are at present considering systems
containing no independent sources. When the neutron emission angular
distribution is anisotropie, equation (2.38) is seen to become

4 R ’
N(r,vQ) = % f Q(r— RS, vQ)e~Fhai® dR, (21.35)
0

as can be found by suitably modifying the arguments leading to (2.36).
In the plane case, the position and angle dependence of N(r,v2) and
Q(r, vQ) reduces to a dependence on one Cartesian coordinate (z, say)
and one angular coordinate (Q, = p, say), while f(v’Q’ > vQ) can
depend on the angle only through Q'. Q. We expand N(z, v, u), @z, v, 1)
and f (v'Q’ - v) = f(v’ - v, R’. Q) in spherical harmonios of x and of
Q' .Q, putting

fR > oQ) = — 2 @n+1)f, (0" > VPR . ),

i (21.36)
N(z,v,pn) 1 N,(z,v),
el = Z L Pty

Substituting these into (21.34) and (21.35) and collecting the coefficients
of P,(r), we have

Qnlx,v) = f dv’ c(v') fo(v' = )0 Ny (2, v') Lot (V') (21.37)
and

Bl = f f Py(n)dQ f e FhadR 2 (20" +1)@u{@— By, 9)Por(ps).
(21.38)
Taking z’ = 2— Ry as a new variable of integration instead of R, and

changing the order of integration, we can rewrite (21.38) in the more
convenient form

(x,v)—- f Z Qs K yun@ > zlv) de,  (21.39)
n'=0
where z = -4-a correspond to the two faces of the slab, and the
K,..(x' - z|v) are certain integrals over 2, whose integrands contain
the product
P,(p)Py()exp[ — [z—2'| [pleot]):

The exact form of these integrals is not of immediate interest, but
we may note a simple interpretation of them. Anisotropio sources can
always be regarded as a superposition of isotropic sources, dipole
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sources, quadrupole sources, etc.; and for mathematical convenience we
may consider a pure dipole, quadrupole, etc., source, Let a 2"'-pole souroe
+ of neutrons of velocity v be situated at the plane x = 2’ in a medium
similar to the slab considered, except that ¢ = 0. Then Kop(2’ - z|v)
- gives the nth spherical harmonic moment of the angular distribution at
~ the plane 2 = z, This interpretation will be utilized in §§ 21.4.2 and
- 21.4.4.
. The systems of equations (21.37) and (21.39) can, of course, be
regarded as a direct generalization, to the case of anisotropic scattering,
of the plane-symmetrical forms of (2.31) and (2.38). Eliminating succes-
sively Q,(z,v) and N, (z, v) between (21.37) and (21.39), we obtain

. N (z,v) = é f i K, (2’ > z|v) dz’ f W”’Nﬂ""’ v') dv’
a ¥=0

. (21.40)
an

Qe = [ L v | 2 B > 0)0u ) d,

(21.41)
and these represent the corresponding generalization of (2.30) and (2.32).
As with the two latter equations, the kernels of (21.40) and (21.41) differ
only slightly, in that f,.(v' - v) and Kposn(z' = z|v) in (21.40) are re-
placed by f, (v -> v) and K,on(a’ - z|v) respectively,

21.4.2. The application of the eigenfunction expansion
Let us now consider the solution of the equations (21.41). We proceed
. a8 in §21.1.1, by supposing solved the equations

ben@l0) = 15 [Vanl )yl > alo) &', (21.42)

where ¢ is treated as a variable parameter. Let ¢}, be the jth eigenvaluet

: of this parameter, and ¢/ (2|v) the corresponding eigenfunction of
. (21.42). We shall also use the abbreviation

Yon(zlv) = cz’,(.'(:):) J. Y@’ [0)K s (2 > z]0) da’, (21.43)

1 From now on we shall place the affix J relating to the eigenvalue in the supersoript

- position, the subsocript position being used for the affixes relating to the spherical har.
- monic moments. .
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Using the interpretation of K,—+n(z' - 2|v) a8 the nth spherioal harmonio
moment at  of the distribution due to a 2n-pole of unit strength at ' in
& certain fictitious system, and applying the optical reciprocity theorem,
we readily see that K, (z' > z|v) is symmetrical in 2 and z’. Conse-
quently, for fixed # and v, the Y —n(2]|v) must form an orthogonal set in
the interval —a < <a. We assume that for any fixed » and v they
form & complete set, and expand @, (x,v) in terms of these orthogonal
functions; the coefficients in the expansion depend, of course, on n and v.

Thus 0ul,9) = S PH Wi nlalo). (21.44)
Substituting into (21.41) and using (21.42) and (21.43), we obtain

FAWaleln) = 33 [ S 10" > e Wl
n 7 n

(21.45)
Normalizing the y,_,,(x|v) by the condition

a
[ V(oW on(alo) do = 5,
+ —-a
introducing the abbreviations
a
A > 0) = [ Y (oWl da,
-a

and replacing ¢(v’) by yc(v’) in order to deal with the eigenvalue problem
under varying composition, we reduce (21.45) to

2io) =y Z ,Z f %A{T_’Zﬁ(v' > )£ (0 > O)pli(v') do’. (21.46)

If f,(v' > v) decreases sufficiently rapidly as » increases, (21.46) can be
solved in a similar manner to (21.8). The case where f, (v’ - v) decreases
only slowly as n increases would occur in practice only in the presence of

an appreciable quantity of hydrogen, and here the method of Chapter XX
is much more suitable than Feynman’s method.

21.4.3. The solution of the auxiliary one-group problem

In the preceding section we have assumed that the solutions of (21.42)
and the values of (21.43) are known. We shall now show how to obtain
these in practice. On comparing (21.42) and (21.43) with (21.40), it is
seen that, for fixed n’ and j, y4.,.(x|v) may be regarded as the nth

spherical harmonic moment in a fictitious one-group problem where the
scattering law is

F 'R > 0Q) = {(2n'+ 1) [4m}PAQ’ . Q)5(v' —v) (21.47)
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and ¢(v) = c}(v). We shall call the corresponding angular distribution
. $h(z, plv). The system to which this refers is fictitious, of course, not
. only in that (21:47) differs from the actual scattering law, but also in
- that the law (21.47) cannot be realized in practice. This, however, does
not affect our ability to determine (2, u|v) by the ordinary methods
of the constant oross-section approximation. Since we need the spherical
* harmonio moments y,,(2|v) of all sufficiently low orders, it is natural
to use the spherical harmonics method to determine ¥, _,(z, u|v), thus
obtaining i,.., as well as y,._,.. The spherical harmonics method,
too, is particularly suitable for the treatment of anisotropic scattering.
In applying the spherical harmonics method with the scattering law
(21.47), we must replace the functions @, (v) introduced in Chapter X
by the functions @, (v,¢), defined by the recurrence relations

(n4+1)Gp 1, €)+1G sy (v, €) {20+ 1) )1 =B, ) Grrs (¥, €) = O

and Grso(vi0) = L.
This clearly gives
Grean(v,€) = (—1)"Fy(1f) (n <n')
. and . .
. Gp—en(vs©)

— wr{af) - () R L =R e )

1 4 " 14
. (n =n'), (21.48)
where the @, are Legendre functions of the second kind.
" We then find as in Chapter X
Phnl(zlo) = ; V) Grion(Vh a(0), che(v) explvh 1 (0)z/1(0)],  (21.49)
" where, in the Py approximation, the v}, x 8re the roots of
G»’—-Nﬂ(v’ ci(v)) =0,

- while the coefficients a}.,, and the eigenvalues ci(v) are determined in
* the usual manner from the standard boundary conditions.

21.4.4. Bodies of other shapes and those surrounded by a reflector which
scatiers only elastically

. Our discussion of the extension of Feynman’s method has hitherto

. been limited to the case of a bare slab. We now consider bodies of other

- shapes. For a bare sphere, the procedure is very similar to the above,

- although u is now, of course, defined as in Chapter X1, i.e. p = (r.Q)/r,
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and the spherical harmonic moments are caloulated relative to this e
Let K,,._,,,(*’ ~> r|v) be the nth spherical harmonic moment at a distance
r from the centre of the sphere, due to a concentric spherically sym-
metric 2*'-pole shell source of radius #* and unit strength per unit area,
in a fictitious medium where the mean free path is equal to the actual
mean free path for neutrons of velocity v, and the number of secondaries
per collision is zero. The equations governing the spherical harmonic
moments @,(r, v) of the neutron emission angular distribution Qr,v,p)
can be written

Quiryo) = dr [ AL > 0g, [72 2 Buanlt' > rio)@utr' v
bon(?') )

(21.41")
where a is the radius of the sphere. By the optical reciprocity theorem,
K, ..(r' > r|v) is symmetrical in  and #’, and consequently, if ¢ _, (r|v)
is the jth eigenfunction of

4me

Lot (v) J

the ¢, (r|v) are orthogonal, for fixed n and v, with the weight factor 72,
L.e. the rf_, (r|v) are orthogonal for fixed n and v. Defining 2., .(r|v)
for #' 7 n in the same way as before (this definition will be called
‘(21.43')’), we see that for fixed j and »’ and various n they represent
the nth spherical harmonic moment of the neutron angular distribution
in a bare sphere of radius @ composed of the fictitious medium whose
scattering law is given by (21.47). It follows that these 2., (r|v) can
be determined without using (21.42') and (21.43') directly. The nth
spherical harmonic moment in a spherically symmetrio system of radius
r should behave as r* for small r. Thus the ¥, , (r|v) for fixed # and v
and various j will not, except forn = 0, form a complete set of orthogonal
functions quadratically integrable in the interval 0 < r < a, but other-
wise unrestricted. However, it is reasonable to suppose that they will
form a complete set of orthogonal functions behaving as r*+1 for small r,
Since Q,(r, v) is itself tho nth spherical harmonic moment in a spherically
symmetric system, 7@, (r, v) should behave as r*+! for small . It should
therefore be possible to expand rQ,(r,») in terms of the orthogonal
functions ry_,.(r|v), and the analysis then proceeds as before.

The modifications required when the slab or sphere is not bare, but is
surrounded by a reflector which does not scatter inelastically, are
evident. The quantities K, ,.(z" > z|v) and Kopon(r’ = r|v) will be

'/'M(rlv) = r'2¢n—m(rllv)Kn-m(r' -> r[v) dr’, (21'42,)
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defined as the nth spherical harmonic moment of the angular distribu-
tion due to the appropriate 2%-pole source in a fictitious system where
¢(v) is zero in the core and the properties of the reflector are unaltered.
The integrationin (21.41) or (21.41’) extends over the core only. Further,
Yio(x, p|v) and Y4, (v, u|v) are the angular distributions in the fictitious
system when the scattering law in the core becomes (21.47), remaining
unchanged in the reflector. The analysis then proceeds as before,

No work has yet been done on the application of this extension of
Feynman’s method to bodies having neither plane nor spherical
symmetry. Though no difficulties would be expected, it is not possible
to discuss these questions in detail; in particular, we have seen that
anisotropic scattering renders the calculations quite laborious, even in
the constant cross-section approximation,
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SLOWING-DOWN PROBLEMS

XXI1I

A GENERAL SURVEY OF SLOWING-DOWN
PROBLEMS. THE SPATIAL MOMENTS OF THE
NEUTRON DISTRIBUTION AS FUNCTIONS
OF ENERGY

22.1, General survey

22.1.1. The main types of slowing-down problem
AFTER dealing with the spectrum-regeneration problems, we now turn
to slowing-down problems, i.e. those where equation (18.3) has no
eigenfunctions in the medium which is chiefly of interest. This causes
two important differences between spectrum-regeneration problems and
slowing-down problems. Firstly, all the methods we have disoussed
hitherto have depended in some way on the existence of such eigen-
functions. These methods are therefore no longer applicable, and for
this reason the progress that has been made in the solution of slowing-
down problems has been much more limited and more uneven than in
the case of spectrum-regeneration problems. Secondly, if (18.3) has no
eigenfunctions, there must be sources present in order for there to be any
neutrons in the medium at all, and the distance from these sources is
certain to be an important parameter. In fact, slowing-down problems
can be classified according to the magnitude of this distance. The sources
may, of course, include a supply of neutrons from other media.

The greater the distance from the source, the more collisions a neutron
must undergo, on the average, before reaching this distance, and thus
the lower must be its energy. It is natural to introduce a slowing-doun
length (defined at the end of §22.3.1) which is, roughly speaking, the
average crow-flight distance a neutron travels from the source before
reaching a given energy. For neutrons of a given energy, the situation
will be noticeably different according as the distance from the souroce is
comparable with or much greater than the slowing-down length. The

former case corresponds to typical neutrons, and the latter to neutrons
3505.99 b 4
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which have travelled exceptionally far in reaching the energy in question.
These two cases represent the two main types of slowing-down problem.
In the first type, i.e. the problem of the neutron distribution at moderate
distances from the source, some information may be obtained by con-
sidering the spatial moments of the neutron distribution, i.e. expressions

of the form
”‘m J’” rN(r, vQ) dV.

all space

The moment of order zero, i.e. the neutron energy spectrum integrated
over all space, is sometimes of direct interest. We have already met with
such situations (see, for example, the discussion of f,,; in §19.2.2, and
that of X,(v) in §20.4.1). The determination of the neutron energy
spectrum integrated over all space may be regarded as a third and
simplest type of slowing-down problem; it implies, of course, that the
medium is infinite and homogeneous, since the spatial distribution of
the neutrons would otherwise have to be determined first.

In comparing slowing-down problems and spectrum-regeneration
problems, it should be remarked that, besides the effect of the intrinsic
difference between the problems, our treatment will differ in another
way. In previous chapters, we have taken account of the energy
dependence only in 80 far as was necessary to determine the critical
size and the spatial distribution, but henceforward the neutron energy
spectrum itself will be one of the objects of our study.t This is the main
reason why we regard the neutron energy spectrum integrated over all
space as leading to a separate type of problem.

In all three types of slowing-down problem, we shall restrict ourselves
to the case where the scattering is elastic and isotropic in the C system,
and the sources are isotropic and monochromatic, i.e. all neutrons are
emitted with the same energy. The solution for polychromatic sources
can always be obtained by superposition.

Most of the methods which we shall describe in this and the following
chapters can be extended without great difficulty to the case of scattering
anisotropio in the C system. However, in view of the complexity of the
formulae concerned, and of the fact that anisotropic scattering is seldom
of importance in slowing-down problems (see § 1.2.2) and is liable to vary

1 This does not imply that the neutron energy spectrum is never of interest in
-regeneration problems, but in such cases the problem can always be divided
into two parts, first finding the spatial distribution of fissions by the methods of the

preceding chapters, and then solving a slowing-down problem with these fissions as
given sources. :
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considerably from case to case, there is little reason to discuss its effects in
general terms. The same applies to anisotropy of the sources.

On the other hand, the anisotropy of scattering in tho L system, arising
from the difference between the L and C systems, can no longer be
neglected. In fact, we shall see that it is very important in dealing with
the distribution of slowed-down neutrons at very large distances from
the source.

The following remark may be made concerning the assumption that the
scattering is elastic in the C' system. If the inelastic scattering cross-
sections and the spectrum of inelastically scattered neutrons after one
collision (i.e. fy(v' — v)) are known, then the inelastic scattering can
always be taken into account by adding the inelastic scattering cross-
section to the capture cross-section, and introducing additional sources

of lower-energy neutrons to represent the inelastically soattered
neutrons.}

22.1.2. The form of the Boltzmann equation in slowing-down problems.

Before discussing any of the three types of slowing-down problem,
we write down the Boltzmann equation for slowing down, under the
assumption of § 22.1.1, i.e. no fission, scattering isotropic and elastio in
the C system, and sources isotropic and monochromatic. We can take
the case of a point source without loss of generality. Using the definitions
in§1.3.1 (see (1.5) and (1.7)), denoting by 1, (v) the scattering mean free
path for nuclei of the kth kind and by I (v) the capture mean free path for

all nuclei, combining (2.4') with (2.18) and dividing through by v, we
obtain

.grad N(r, vﬂ)+[r(la+ z l—ﬁ]N(r, v82)
(] k 8,

Matl,
My—1

M, 2 dv’ , 'y
=Z(4:Ei) f v,':(v,) ”dgmr,m)x

x»s(sz.sz'—‘M*+1)”;‘;jf"*“)”")+fms—08<v—vo)8.(r).

(22.1)

t This procedure would, of course, be convenient only if the nuclear excitation levela
involved in the inelastic scattering in the O system are fairly high, so that the neutron
loses & considerable amount of energy in the process; this is usually the case in alowing-
down problems. If, however, there are numerous low excitation levels, the above

procedure is no longer suitable, but an alternative procedure is available, which will be
outlined in § 23.4.3.
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where M, is the mass of a nucleus of the kth kind, v, is the initial velocity
of the neutrons, § is the number of neutrons emitted by the source per

unit time and per unit solid angle, and 84(r) is the three-dimensional
delta function defined by

85(r) = 8(x)8(y)3(2).
We have not assumed that N(r, v§2) is spherically symmetrical, since
the geometry itself may not be.

It is often convenient to expand the solution of equation (22.1) in

spherical harmonics. For a plane source in a plane-symmetric system,
putting as in Chapter X

b= Qz’ N(!', vﬂ) = N(z,v, B) = (1/4")g (2”+1)Nn(1, v)P»(F')t

and transforming the left side as in the derivation of (10.4) and the right
side as in §17.1, we obtain

9 ) 1 1
(n41) -a—zN,‘ﬂ(x, v)4n pord N, (z,v)+(2n+1) [m -+ Z m]N,,(z, v)

1
=1

_ (M, +1)2 dv’ )
= (2n+1) Z ;-Mk f vll"k(vl)N"(x) v )x

xP,.[(M,,+1)v=2—w(%—1)vlz] +£s(v_vo)s(z)3"o_ (22.2)

If only Ny(r,v) is required, its value for a point source in & spherically
symmetric system can be obtained from the solution of (22.2) by the
relation

Noplr, v) = —%[6%: ot ”)] ’

see the footnote to (5.44).
To deal directly with the case of a point source in a spherically sym-

metrio system, we put now p = (r.R)/rand proceed as in the derivation

of (11.5). It is then clear that the first two terms in (22.2) should be
replaced by

(n+1)(§,+”7“)1v,.ﬂ(r, v)+n(§;— e A

whilst the only other alterations needed in (22.2) are the replacement of
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N,(z,v), N,(z,v'), and 5(z) by N,(r,v), N,(r,v"), and 8,(r) = (1/4mr®)3(r)
respectively. We call this modified form of (22.2) ‘(22.2°y.

If the system is not spherically symmetric, we expand N(r,vQ) in
spherical harmonics and use the procedure of Chapter XII. That is,
similarly to (12.5), we represent N (r,vQ) in the form

(e, o) = = " @nt-1[Ny(r, 0, W), .,

where W = WQ is a vector of arbitrary magnitude W and direction ,
corresponding to U = U in Chapter XII, and (1/47)(2n+1)N,(r, v, W)
represents W* times the combined contribution to N (r,vQ) from all
the spherical harmonics of order x. Proceeding as in the derivation of

(12.11), we find that the first two terms on the left side of (22.2') are
replaced by

divw gl"adr Nn+1(ra v, W) + [(2”'— 1 )w’ — W divW]gradt Nn-l(r’ v, W),

whilst the only other alterations needed in (22.2’) are the replacement of
N,(r,v) and N,(r,v') by N,(r,v, W) and N,(r,v', W) respectively:

divw grad N, ,,(r,v, W)+[(2n—1)W. — W? divy]grad, N,_,(r,v, W)+

1 1
+(2"+1)[l:iv_)+ Z W]Nn(r, v, W)

(M +1)2 J dv’ ,
= (2n+1 ~N,(r,v', W)X
( )Z 2, ) T,

x P" [ (M;+-1 )0’2;;(11”"_ 1 )v"] + _go S(v_vo)ss(r)suo. (22.27)

The first two equations (22.2") will be of particular interest later, and
we shall rewrite them in a somewhat simpler form. It is clear from the
definition of N,(r,», W) that Ny(r,v, W) is independent of W, and is
identical with what we have previously called n(r,v) (see (2.26)).
Ny(r,v, W) represents the scalar product of W and a vector which
characterizes the current of neutrons of velocity v and may be called
i(r,v); this latter vector is, of course, independent of W. We eliminate
W from the second of (22.2") by operating on it with grady, and, since
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divwgrad, = div,grady, the first two equations (22.2") become

div, i(r, ")‘"[z(l_v)‘*' > E‘l(v—)]n(r, v) )
¢ k &
Mt+1',
= (Mk"" 1)’ et n(r: v') dv’ Ss S
Z 2Mk J. vll"k(vl) +;J; (v_vO) S(r)

and

grad' divt gfadw N:(r) v, W) +gradr n(r, !I) +

. (22.3)

’

2, ) 200 VI, ()

-3 U1y [ Gt Gl s g,

22.1.3. The lethargy and the collision interval
In all the above equations, except in the arguments of l(v) and [, ;(v),
it is the ratios of velocities which are involved, rather than the velocities

-themselves. It is therefore often convenient to replace v by a new
independent variable

u = 2log(v,/v) = log(E,/E). (22.4)

This quantity is called the lethargy. If it is taken as an independent
variable, however, some caution is necessary. Since N(r,»82), n(r,v),
etc., have been defined as the numbers of neutrons per unit velocity
interval, they must be replaced by new functions N(r, u, ), i(r, u), etc.,
given by the relations

N(r,u, Q)du| = N(r,v)|dv|;
7(r, u)|du]| = n(r,v)|dv|.
That is, N(r, u, ), 7i(r, u), etc., are the numbers of neutrons per unit
lethargy interval. The delta function, too, transforms according to the
formula \
S(v—v,)|dv| = &(u)|dul.

Substituting these relations in (22.1), determining |dv/du| from (22.4),
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and multiplying the resulting exptession by v, we obtain
Q.grad N(r,u, sz)+[ TRk z e )]N(r %, Q)

- S | oot [ o

®—
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X 3[R . Q' — 3 (My+1)e~u-)4 J( M, —1)ei¥-] dQ' 4

+%08(u) 5(r), (22.10)

where I (u) and [, ;(u) are the appropriate mean free paths expressed as
functions of the lethargy, and

M. +1
= 2log =X _; 22.5

the letter I in the number of the equation stands for ‘lethargy’. The
equation (22.17) differs from that obtained by replacing N(r,vS2) and
3(v—rv,) in (22.1) by N(r, u, Q) and (), because the factor exp }(u'—u)
appears in the integrand.

The same modifications are necessary in equations (22.2) to (22.3) if
the lethargy is takon as the independent variable instead of the velooity.
We call these modified equations (22.21), (22.2'1), (22.2"1), and (22.31).
They will not, however, be used immediately, although the concept of
lethargy will be employed in our discussion, and in certain series
expansions. '

The largest value of ¢, which appears in equations (22.11), (22.21), ete.,
i.e. the largest increase in lethargy that a neutron can undergo in one
collision in the medium concerned, is called the collision inferval. More
generally, if the lethargy can increase from u; to ug in one oolligion, u,
and u, are said to belong to the same collision interval. The same
terminology can be used when working in terms of velocity, but the
collision interval is not then independent of the velocity.

It has been assumed in the above definition of the collision interval
that all the kinds of nucleus present in the medium are present in compar-
able amounts. If, however, there are so few nuclei of some kind that their
presence can be regarded as a small perturbation, it is customary to
disregard this kind of nucleus in defining the collision interval.

22.1.4. The slowing-doun density

Another quantity which is important in dealing with slowing-down
problems is the slowing-down density x(r,v). This is defined as the
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. number of neutrons per unit time per unit volume which are scattered
. -nearr froma velocity greater than v to one less than v. Since the number
of neutrons in the velocity interval from v to v’ +dv’ which have collisions

near r is VAL, ¥') [l (v')

per unit time per unit volume (see §2.1), and the fraction of these that

* are scattered and not captured is ot (V')/L(v") (see §1.3.1), we clearly
have :

x(r,9) = f dv'”—'%((:;—)”') f F > o") dv, (22.6)
v 1]
where JW o) = f f FW'R > v"Q") dOr,

Since f(v’ — v*) has the dimensions of reciprocal velocity, and the

number of neutron collisions per unit time, volume, and lethargy interval

1s vi(r, u) __vin(r,v)

w) — 2 Iy’

it follows from (22.6) that the slowing-down density is dimensionally
+ oqual to the neutron collision density per unit lethargy interval.
. If the scattering is elastic and igotropic in the C system, combining
(22.6) with (2.18) and adopting the notation of (22.1), we have

M +1,

=1 14
_ ¢ (M 41)2 n(r,v’) dv’ vy .
x(r, v) = Z “—2Mk f —'—‘-—v,l.’k(v,) f v d’v
. %ﬁv
. or, what is the same thing,

b My+1

: o, +1)*§‘W’P:—1 n(r, o) dv'  (M,—1y it v'n(r, v') dv’
. """”=Z["' - [ Vi) T4 | o) }

(22.7)

The most obvious application of the concept of the slowing-down
. density is as follows. Consider the region of the four-dimensional (r,v)
* 8pace defined by the conditions that v lies in an interval [v,, v,), while r
_ lies in a volume ¥ bounded by a surface 4. Ina stationary problem, the
- number of neutrons in such a region will be conserved, i.e. the number

entering it per unit time should equal the number leaving it. This
" condition can be written in the same way as (6.34), except that, in addi-
~ tion to the sources, capture, and migration in r-space, we must also
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consider migration along the v-axis, i.e. slowing down. We then obtain
in a notation which is evident from (8.34),

f! f [x(r,vl)—x(r,v,)]dv+jdv i f i(r,v).dA

- fd [ [ [ @ [se.0- e, ang

80 that the slowing-down density may be regarded as the component of
the ourrent along the velooity (or lethargy) axis. Another useful relation
is obtained by differentiating (22.8) with respect to v,. If the sources are
distributed uniformly in space, N (r, v€2) is independent of r, and there-
fore of £, so that j(r,v) is zero, and formula (22.8) reduces to

x(¥1) = x(ve)+ f [a(v)-—';:‘(g;)] dv. (22.9)

If the sources occupy only a finite region of r-space, we obtain the same
formula (22.9) on taking s(v), n(v), and y(v) as the integrals of s(r, v),
n(r,v), and x(r, ) over all space.

22.2, The integral of the neutron energy spectrum over all space
22.2.1. A single element with no capture

We now turn to a consideration of the various types of slowing-down
problem, and take first the simplest type, namely the determination of
the integral of the neutron energy spectrum over all space. This is, of
course, equivalent to the determination of the neutron spectrum at any
point when the sources are distributed uniformly in all space. In the
latter case, all points in space are equivalent, and the neutron angular
distribution should therefore be isotropic. That is, all terms in the
spherical harmonics expansion of N (r,vQ) except Ny(r, v) = n(r,v)
must vanish, and n(r, v) is independent of r. The system of equations
(22.2), for example, thus reduces to

1 1 o~ (M1
o S = 3 2

1y

n(v')
'l (v')

2
e

dv’ +£8(v—vo).

(22.10)
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: We first examine the simplest case, that of a single element with no
capture. The equation (22.10) then becomes

Mi1,

=1
n(v) (M+1)2 ') dv 8
Yoy~ 2M o) 7'*‘,,—03(”—%)- (22.11)

For v > v,, n(v) must vanish, since there cannot be any neutrons in the
. system with greater energy than those emitted by the source. Thus, if
t o lies in the first collision interval [(M—1)/(M+1)]y, < v < v, the

upper limit of integration can be replaced by v,, and equation (22.11)
then becomes an ordinary linear differential equation for

j” (v’) dv

This equation can, of course, be solved at once by the standard methods,
For the second colligion interval

[(M—1)/(M+1)}rv < v < [(M—1)/(H+1)]o,,
the integral involved can be written

n(v n(v')dv' :r n(v') dv’ (22.12)

l(v i W) v °
Mii,
=i
The second term in (22.12) is already known from the solution for the
first collision interval, and we thus have a differential equation for

(') v’

of the same form as before but with a different free term. The value of
#(v) for any v could in principle be determined in this manner by proceed-
ing from one ocollision interval to the next. This procedure becomes
prohibitively lengthy after the first few intervals, however, while it
would be desirable to be able to determine n(v) for remote collision
intervals (u 3> ¢, where, as before,

u = 2log(vyfv) and ¢ = 2log[(M+1)/(M—1)])

directly. To do this, we may use Mellin transforms with respect to the
velocity or, what is the same thing, Laplace transforms with respect to
the lethargy. Multiplying (22.11) by (v/v,)*? and integrating over
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all v, changing the order of integration and putting

’ln(v) r JT(%)
é(n) = f (v) Ty dv _J‘e-ﬂ Tt )du, (22.13)
we readily obtain

$(n) = 2%2': fl)[l ( M-|—-1)"'+1]¢(1')+1‘78;'

Solving the last equation for ¢(n) and applying the usual inversion
formula, we have

n(v) 2 7i(u)
W) ~ v w)
2S p “fr 1

g\ '
=Sim | T = (70) dn, (22.14)
TP T+l oM | \M+1

the path of integration being taken to the right of all the singularities
of the integrand. These singularities consist only of the poles at the
roots of 2M(2y+l) _ | (M—Tymn

(MF1)F — M+l
The integral in (22.14) is, of course, oscillatory, but this can be dealt with

in the same way as in § 5.3. Then, deforming the path of integration and
using the method of residues, we easily obtain

n(v) 2M S —1 Vo

e L
Y=+l

(22.15)

M41

where the 7; are the roots of equation (22.15).

One root of (22.15) is 5, = }, and it can easily be shown that all the
otherroots lie to the left of this. For v < vy, the most important contribu-
tion to (22.18) therefore comes from 7, = }, and we can rewrite this
formula as

7;((:)) GM —M_[1-+terms tending to zero as v/v, —> 0]
or as Nog(v) = Cyy Sl(v)/v?, (22.17)

_ (M—1)2, M+41
where C’M—2/[l- 53 log 83— l] (22.18)
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. The formulae (22.17) and (22.18) could have been more simply derived
: by & physical argument. Applying formula (22.9) for a monochromatic
© source in a non-capturing medium, we have

x(v) = constant = § for all v < vy (22.19)

Combining this with (22.7) and taking the case of a single element, we
" obtain

' et file
8= M1 J' n)dy  (M—17 [ vap)dy (22.20)
_ M v'l(v') M f W)

This may be regarded as another equation to be satisfied by n(v); Ny ()
should clearly satisfy (22.20) and the homogeneous form of (22.11 ). Since
the slowing-down density is constant in the case considered (sce (22.19)),
- and is dimensionally equal to the neutron collision density per unit
lethargy interval, it seems likely that the latter quantity vii(w)/l(x) also
is constant in the asymptotic region, i.e, n,(v) should be of the form
. yy(v) = constant X I(v)/22, (22.21)
. It can be verified by direct substitution that (22.21) is in fact the solution
of the homogeneous form of (22.11). By substituting (22.21) into (22.20)
" the multiplicative constant can be determined, and we reach (22.17)
- with Oy given by (22.18), as would be expected.
¢ To determine the point at which n(v) can be replaced by n,,(v), the
. former has been evaluated from one collision interval to the next,
starting from v = v, i.e. following the method described in connexion
' with (22.12), and the results compared with (22.17). This has been done
; for a number of values of M in the range [2, 0], and it was found that,
« for all M in this range, the difference between n(v) and n,,(v) after three
" oollision intervals (i.e. for v < [(M—1)/(M+41)]v,) is negligibly small
- for most practical purposes (Placzek (41)). Since the determination of
* n(v) by this method is fairly easy for the first three or four collision
* intervals, (22.18) need never be used except when it reduces to (22.17).
~ For hydrogen (M = 1) the collision interval is infinite, and the first
- differential equation derived from (22.11) gives n(v)/l(v) immediately
* for all v. The solution of this differential equation is of the form (22.17).
- This implies that, for M = 1, the series (22.16) reduces to one term, and
- this is easily seen to be true, since (22.15) has only one root for M = 1
To conclude the discussion of a single element with no capture, let us
* examine the analytical character of n(v). We can take M > 2, since the
exact solution for M =1 is already known. Here it will be more
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convenient to revert to the procedure described in connexion with
(22.12), i.e. to consider n(v) in each collision interval in turn, starting
from v,. Within each oollision interval n(v)/l(v) is analytio, sinoe it is the
solution of a differential equation with an analytio free term, and it
is necessary to examine only the singularities of n(v)/l(v) at the ends
of the collision intervals, i.e. for v — (M —1)/(M+1)]*v,. Since n(v)
contains a term proportional to 8(v—uvy), the integrand in (22.11) contains
a delta function when v is in the first collision interval. At the end of the
first collision interval, this delta function disappears from the integrand,
and n(v)/l(v) therefore has a discontinuity for v = (M —1)/(M4-1)]v,.
For all smaller v it will be continuous. At the end of the second collision
interval, the integrand in the second term of (22.12) is discontinuous,
and therefore n(v)/l(v) has a discontinuity in its derivative at this point.
For all smaller v, the derivative also is continuous. Similarly, at the end
of the third collision interval the second derivative of n(v)/l(v) will be
discontinuous, and so on. This implies that the series (22.16) can
converge only for v < [(M—1)/(M+ 1)Jv,, its derivative series only for
v < [(M—1)/(M+1)]tv,, and so on. Thus, although the first term
of this series is, as we have seen, a good approximation for all
v < [(M~1)/(M+1)]v,, the improvement obtained by taking farther
terms will seldom be worth the trouble, '

22.2.2. A mizture with no capture

We now turn from equation (22.11) to the more general (22.10),
Since the scattering cross-section is almost constant for many substances,
we shall first consider the case where capture is absent (I,(v) = o),
whilst the scattering mean free paths for all the elements present are
either constant or given by the same law of variation, i.e.

1
I,4(v) ; o) = constant. (22.22)

By analogy with the previous case (a single element), we should expect
that the deviations of n(v) from n,(v) will disappear after a few collision
intervals, Except in hydrogenous media, the ocollision interval is
usually very small compared with the energy range concerned, and so
7,4(v) i8 usually the quantity required. The expression for Ny4(v) can be
obtained as in the preceding case, and is

—1)2 -1
fualt) = 231(»)[1_ Zl.’i'g) (Mngl) logfé:ii] v (2239)
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. where, as before, § is the source strength and I(v) the total mean free
+ path in the mixture, i.e. 1/i(v) = 3 1/I, ,(v).
. As with (22.17), (22.23) can be derived in two ways, either by Mellin
. transforms or by using the slowing down density, (22.19) and (22.7). The
- latter derivation is much simpler and clearer, and shows the range of
" applicability of (22.23). It is seen from this derivation that it does not
matter whether the condition (22.22) is satisfied for all velocities
between v and v,; the only relevant conditions are that the medium is
non-capturing over this velocity range, and that (22.22) is satisfied at v
' andovera few collision intervals aboveit. This, of course, greatly extends
+ the range of applicability of (22.23). It also suggests that (22.23) is a
. fairly good approximation even when the quantities

Uv) [y (v) (22.22')

vary near v, provided that they vary smoothly and change relatively little
in one collision interval. Such a conjecture should be qualified, since the
condition of smooth variation implies the smallness of the higher
derivatives with respect to some variable. It is found that this variable
- should be the lethargy, if the conjecture is to hold for all M, > 2. The
. oonjecture can then be verified by direct calculation, substituting
(22.23) into the equation to be solved (i.e. the homogeneous form of
(22.10) with no capture), and expanding the various I(v’) [lex(v’) in powers
of the lethargy difference:

U )L av') = UD)[L, .,,(v)—-log-g;. dlggv[l(v)/l, k)]s (22.24)
(d*/d(log v)*)[I(v)[l, ,(v)] is regarded as a quantity of the kth order of
smallness. On calculating the terms of various orders, it is found that
they vanish in the zero and first orders, and thus the extent to which
~ (22.23) fails to satisfy the equation to be solved varies as the square of
© the relative changes in (22.22') in one collision interval. These changes

~ must therefore be very considerable before (22.23) becomes seriously
inacourate.

22.2.3. The effects of capture

If capture is present, the relation (22.19) no longer holds, and the
more general relation (22.9) cannot be utilized so easily. It is therefore
necessary to use either less accurate approximations or more laborious
methods. There are, however, two cases where the presence of capture
introduces no new difficulties. One is the case of pure hydrogen, where
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(22.10) can be converted immediately into a differential equation valid
for all v, which can easily be solved. The other case is where all the cross-
sections involved follow the same law of variation, i.e. their ratios are
constant. Here the Mellin transform method can again be applied.
Putting for brevity I(v)/l,(v) = 1—c¢, and l(v)/l,1(v) = cp,, where I(v)
is the total mean free path (i.e. 3 p, = 1), we obtain

Ne(V) [l {v) = Av-v, (22.25)
where y is the root of

- TR

having the greatest real part, and the constant 4 is determined by
evaluating the residue of the Mellin transform at the pole corresponding
to this root.

If the ratios of the cross-sections are not constant, approximate

methods must be used. Three kinds of situation have received partioular
attention, namely:

(1) the case where the ratios of the cross-sections vary little in one
collision interval; '

(2) the case where the cross-sections vary appreciably over only one
(or at most a few) collision intervals;

(3) the case of a single element when the ratio of capture to scattering
varies as some negative power of the velocity, i.e. 1,(v)/l,(v) = (v/w)¥,
say, where k > 0.

Let us take the first of these three cases. If the ratios of the cross-
sections become constant for v < v;, say, then n,(v) should, by our
previous arguments, take the form (22.25) a few collision intervals
below v,. The coefficient 4 will, of course, be different. Placzek (41) has
suggested the following approximate method of determining 4. Sub-
stituting (22.25) into (22.7), we obtain, since the ratios of the cross-
sections are assumed constant in the collision intervals concerned,

x(v) = But-v, C(22.27)
where B is another constant whose ratio to 4 can easily be determined.
Wehave derived (22.27) for v a few collision intervals below v;. However,
there are good reasons for believing that, if capture is fairly small,
formula (22.27) is valid much closer to v, than (22.25), and that the
error in applying (22.27) up to v, is much smaller than the corresponding
error in (22.25). This conclusion is suggested firstly by the fact that, if
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there is no capture for v < v,, (22.27) is rigorously true, as we have seen,
for all v < v,, and secondly by the analogy, pointed out in connexion
with (22.8), between the slowing-down density and the current, together
with the fact that the assumption of constant ratios of cross-sections is
the counterpart of the diffusion approximation. It is known that the
relative deviation in the diffusion approximation for the current at the
interface between two media is much less than the deviation in the flux;
see §8.4. Thus (22.27) can be applied up to and including v, without
serious error. We can then imagine that the cross-sections vary stepwise,
as in multi-group theory, and apply (22.27) to each group. The values
of B and y are different, of course, for each group, those of B being
related by the condition that y(v) is continuous. Eliminating the B by
differentiation, and writing y as y(v) to indicate the group concerned,
we have for each group the relation

.x_("v_) ‘%f}l) = 2—y(v). } (22.28)
If (22.28), together with the continuity of x(v), gives a good approxima-
tion in the case of stepwise variation of the ratios of the cross-sections,
it should clearly give at least as good an approximation when they vary
continuously. Integrating the differential equation (22.28), we have,
gince by (22.9) x(v,) = S,

x(v) = Sexp[— J‘ [2—y(v')]%07’]. (22.29)

Having found x(v), we can determine 7,,(v) by assuming that the ratio
*Nas(v)
x(v)i(v)

has approximately the same value as it would have if the cross-sections
were constant and equal to their actual values at the velocity considered.
This assumption introduces a slight error, but the error is not cumula-
tive.

In applying formula (22.29), we should recall that the derivation of
(22.28) implied that the change in the cross-sections at each step is small
and that these steps do not occur very frequently. This means that in
the case of continuous variation we should assume the changes in the
cross-sections in one collision interval to be small. The above derivation
is valid only if the ratio of capture to scattering is also small.

If these two assumptions hold, and the variation of the cross-sections
is sufficiently smooth, there is another way of solving the equations.
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This consists in expanding the ratios

Vina(¥)Uv’), L)L), eto., . (22.30)

in powers of the lethargy difference (a8 in (22.24)), terminating the
expansions after a few terms, and substituting into the equations. The
integration over v’ is carried out, and thus an approximate differential
equation for v2n,,(v)/i(v) is obtained, There are three reasons why the
quantities (22.30) are expanded in powers of the lethargy difference and
not the velocity difference, Firstly, the collision interval is constant
on the lethargy scale; secondly (a closely related reason), the quantities
(22.30) have some singularities at v* = 0 which may affect the conver-
gence in powers of v'—v, whereas the corresponding singularity a
' = 00 cannot have any effect on the convergence; thirdly, the results
- 0f (22.23) and (22.24) suggest that simple yet (relatively) accurate results -
can be obtained if the higher derivatives with respect to lethargy are of
higher orders of smallness,

In the present problem, this alternative procedure is not so satisfactory
a8 the one given previously. Unless we work to the first order, we reach
a differential equation which cannot be solved analytically, and has to
be integrated numerically. If, on the other hand, we work to the first
order, i.e. retain only the first derivative of Tas(v), the accuracy obtained
is considerably inferior to that of (22.29). However, the procedure is of
interest because of the ease with which it can be extended to space-
dependent slowing-down problems. We shall return to it in Chapter
XXI111,

Hitherto we have considered only the case where capture is small and
the cross-sections vary relatively little within one collision interval, It
has been remarked in §1.3.2, however, that in practioe we often find
capture resonances, where the capture cross-seotion rises to & sharp
maximum at some energy. In such a case formuls, (22.29) is no longer
a valid approximation in the resonance region, and an alternative means
of calculating y(v) in the resonance region is necessary. If the resonance
is narrow, lying entirely within s few collision intervals, this can most
naturally be done as follows. We calculate x(v) from (22.29) up to the
point where the resonance becomes appreciable. These y(v) over one
collision interval above this point are converted into Tas(v) (s00 the
discussion following (22.29)). We then return to the original equation
(22.10), and solve it from one collision interval to the next as explained
in connexion with (22.12), using the values of n,(v) just found. This

Process is continued until the resonance has been passed and (22.28) can
250,09 z
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again be used. Then x(v) is determined from (22.9), and thereafter we
again use (22.28), i.e. (22.29), but with a modified value of S. A more
detailed account of this procedure, together with information about
practical devices, is given by Placzek (41).

22.2.4. The case of 1/v capture

Another important case, besides resonance capture, in which the
cross-section varies too rapidly for (22.29) to be applicable, is that of
1/v capture at low energies (§ 1.3.2) and in time-dependent problems (the
fictitious capture of §3.2), the scattering cross-sections being approxi-
mately constant. For simplicity we shall assume that these laws aro
exactly satisfied, and that only one element is present. Taking the
scattering mean free path as the unit of length, and using n,(v) rather

_ than n(v) (which is equivalent to putting v, = o), we obtain from
(22.10):

10

( ) (v) = (M'H) (v')-d;)”T'. (22.31)

where w is the velocity for which the capture cross-section is equal to the
soattering oross-section. Forv 3> w we may regard the capture as a small
perturbation,andexpand the solution of (22.31) in powers of w. This gives

Naa(v) = [1 + z ( ) ] (22.32)
n=1
where, as in (22.17), § is the source strength, Cy, is given by (22.18), and
the 4, can be determined by substituting (22.32) into (22.31) and com-
paring the coefficients of powers of w. An examination of these coeffi-
cients shows that, for M fixed and n —+ o0, 4,,,,/4,, ~ 1, 80 that (22.32) is
convergent for all v > w. However, the relation 4,,,, =« 4, holds only
forn>»> M; forn < M, A, increases rapidly with », so that (22 32)is of
little use for large M. Thm ocould have been foreseen on physical grounds,
since for large M a neutron can lose very little energy in one collision;
many oollisions are thus needed for a considerable energy loss, and so
capture may be important even if the capture probability per collision
is small. The series (22.32), on the other hand, can possess reasonable
initial convergence only if the effects of capture are small.

It can easily be shown that, for n fixed and M — o0, n!4,/A? -+ 1. In
view of this result and of the conclusions of §22.2.3, Placzek (41) has
suggested that logna(v), and not nas(v) itself, should be expanded in
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powers of w, putting

Meslt) = %ﬂ exp[i B,,(_ :i’)"] (22.33)

A=l
where

Bﬂ = An—"}gAn‘An—n’+%ggAn'An”An—n'—n"—"' .

On calculating the B,, we find that every B, is of the order of M when
M is large. The maximum value of (22.33) is thus reached for v of the
order of Mw. For v of this order, all the B, being of the same order, the
higher terms of (22.33) are unimportant, whilst beyond the maximum
744(v) decreases very rapidly and is insignificant for v of the order of w.
Thus, for most purposes, we can terminate the series in (22.33) at the
first term, using simply

MM 1) "’] (22.34)

_ 80y
- )= 7""1’[-—54‘:;— v
where we have inserted the actual value of B,.
Although the conclusion that (22.34) is usually adequate has been
reached by arguments concerning orders of magnitude, it appears to be
valid not only for heavy nuclei, but also for fairly light nuclei. It has been

shown by Davison and Mandl (14) that, if g,(v) is defined by

| a0V lexact 3" = g3(2) [ [maa(t)]o ', (22.85)

where [n4(v)], is given by (22.34), then the ratio g4(v) is a monotonic
function of v lying within the limitat

1 = g4(00) < ga(v) < g4(0)
_MM41) (M—1)2 M-}-l] ~ 1 _l__)’ 9
= =) [1“ oi 8ar—1) =\'tam) - (230
The above analysis can be immediately extended to the case where
Li(v)[l,(v) = (v/w)*, k being any positive number. The case of a mixture,
however, has not been investigated in such detail.

t The proof of (22.36) is too long to be given in full, but we shall outline it. We first
PUt [nag(v)]azact = g1(0)[n4e(v)]o, and convert (22.81) into an equation for g,(v). It can
then be shown from this equation that 9:1(v) is always greater than & certain weighted
mean of g;(v’) over the collision interval above v, i.e. g(v) increases ‘on the average’ as v
decreases, Similarly, if we suppose that g,(v) has a maximum, say at v,, it can be shown
that g,({(M + 1)/(M—1)}v,) is greater than the weighted mean of g,(v’) over the collision
interval v; < v' < [(M+1)/(M —1)lv,. There ia therefore another maximum for some
93 > v;, and 80 on. That is, if g,(v) has any maxima, either it must have them for
arbitrarily large v, which is impossible by (22.32), or there must be & real positive v == v¥,
say, in the neighbourhood of which g,(v) has an infinite number of maxima and minima.
In this case g,(v), and therefore yy(v), has an essential singularity at v*; therefore, by
{22.31), ny,(v) has essential singularities at v*(M+- DM —1), o*(M+1)%/(M—1)}, etc.,
which is impossible, by (22.32). Thus g,(v) increases monotonically as v decreases, and

log
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22.3. The spatial moments of the neutron distribution. The
slowing-down length

22.3.1. Definitions

We here conclude our discussion of the neutron energy spectrum
integrated over all space, and we now turn to the determination of the

spatial moments of the neutron distribution., For a plane source, these
are defined as

«©
Mopil) = [ nle, v)a* da, (22.37)

-
where n(z, v) = N(x, v) has the same meaning a8 in (22.2). The extension
of the definition to the case of a point source is evident. Since the
integral (22.37) is not one-valued if s is not integral, and vanishes by
symmetry when s is an odd integer, we consider only even integral values
of 8. The zero-order moment s, of course, the same as n(v) of the preceding
section. The ratio of the sth moment to the zero moment is the expecta-

tion of the sth power of the distance from the source to a neutron of
velocity v. This can be written

Mul)/n(o) = iied]
and Mos(O)fn() = (*(0)3uy

Since r? = 23443422, while the values of {a*(v)Day, etc., are obviously

(22.38)

the same must be true of gy(v). Sinoce (22.34) is exact for v me ®, gy(c0) = 1, It only
remains to evaluate g,(0), i.e. to ind

«©
| haa(®)lexact do.
0
This can be donse by taking the Mellin transform of (22.31) and noting that

lim [(1-1,) rv"n,.(v) dv] = lim v¥n,(v).
n—+1— Pl o

This gives

- ‘

© [ [Maa(9)]ezact do
1]
- lim {{(M +1)Y2M 5+ M1~ {(M—1) /(M +1)}'“"]—l} lim o*ngu(o),
1 1wy v-s00
while (22.34) gives at once
w0
w of [aal®)]y dv = Mﬁ; 4 5 Jim otng (o).

This completes the proof of (22.36).
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independent of whether the source is g point or a plane, we have
P (0)ay = 3¢2¥(v))yy , }
Cr@Day = 3(24(0))gy+8[<22(v)dey ]2, oto.

80 that it is sufficient to consider the spatial moments for a plane source.
Some authors define the spatial momentsin a slightly different manner,

using the slowing-down density instead'of the neutron density. We

distinguish the moments defined in this manner by asterisks, putting

(22.39)

m¥ y(v) = f x(x, v)a* dz, (22.37)

MooV} X(v) = ()2, eto. - (22.38)

The quantities (22.38’) are not identical with (22.38), since the latter
relate to the distances at which neutrons of velocity v are found, while
the former relate to the distances at which neutrons are slowed down
from velocities greater than v to those less than v. These latter neutrons,
however, may have any velocity lying in the collision interval above v,
Instead of being equal to (22.38), the quantities (22.38') are related to

them only by certain inequalities, which for a single element can be
expressed as

C@%(v))%, lics between (2(v)>y, and <z‘(M +lv)> . (22.40)

M—1
In faot, we shall see shortly that

(V) ar > (2(0)32, > <x-(M +1.,)>“.

M—1

The relation (22.40) holds for mixtures also, provided that M is under-
stood as the mass of the lightest nucleus present. Normally, however,
the changes in {z*(v)),, over one collision interval are very small, so that
(22.40) is practically an equation. This argument does not hold for
hydrogenous media, but it is usually possible to disregard the difference
between (22.38) and (22.38') even in this cage.

We have introduced both these sets of moments because (22.38) are
more convenient for numerical work, whereas the general physical
arguments are clearer when applied to (22.38').

One further general remark should be made. Let the slowing-down
density be normalized to unit source strength, and let the position of
the source and the initial neutron energy be explicitly shown. Then,
disregarding the anisotropy of scattering in the L system for collisions
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»  which decrease the neutron energy from above v’ to below v’, but not for
:  any other oollisions, we clearly have

xX(To = 2,09 -> v)

L4
= J‘ x(%o = Z',v5 = V')xo{x’ > 2,0" > v)dx’ for vy > v > .
-0
Using the definitions (22.37') and (22.38’), and recalling that all odd-
order spatial moments vanish by symmetry, we obtain

(aMvy = V)oy = {2*(vg > ' D2y +<{Z (V" > V)5

(@M > 0Dy = (T > V")) 2+ 6CaH (v > )y X . (2241)
X {2} v' - v))E, LAY > v))a,, ete.

To disregard the anisotropy in only one collision for each neutron cannot

lead to a great error, and so the formulae (22.41) are nearly exact. How-

ever, if they are applied repeatedly, a considerable error may be acoumu-
lated. For instance, if N is large and y is very close to unity, it would

N-1
not be correct to calculate (x2(vy— Y1) e, 88 3 {(x2(y™v—> ¥ 10g))av,
n=0

though this would give a very good order-of-magnitude estimate.

Two corollaries follow from formula (22.41). The first is that the
quantities (22.38’) increase with decreasing v, i.e. the inequalities (22.40)
are in the direction stated. The second is that this increase is roughly
proportional to the lethargy; thus, from (22.40), it is seen that the
difference between the quantities (22.38) and (22.38’) can be dis-
regarded for lethargies large compared with the collision interval,
though not for lethargies comparable with the collision interval,

The ratio of the second spatial moment to the zero-order moment is of
particular importance. For this reason, we introduce the slowing-down
length L,, defined by

Li(v) = Kri(v))ay = Kz*(0))3y- (22.42)
The first of (22.41) can then be written
L3 (v, — v) = Li(vy > v')+L3(v' > v). (22.43)

22.3.2. The equations for the spatial momenis

As we have already remarked, it is sufficient to evaluate the spatial
moments for the plane case, and we shall omit the suffix pl from now on.
The quantities (22.37) are a particular case of the more general quantities

mc.n(v) = an(x: v)a? dz, (22.44)
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where the N,(2,v) are defined as in (22.2), i.e. m, ,(v) is the sth spatial
moment of the nth spherical harmonic moment of the neutron distribu-
tion (for velocity v) due to a plane source of neutrons of velocity v, at
z = 0. Alternatively, m,,(v) may be interpreted as the value at z = 0
of the nth spherical harmonic moment of the distribution of neutrons
with velocity v, due to a distributed source of neutrons of velocity v,,
the strength per unit volume varying as 2*. In the latter case, the
spatial distribution of any spherical harmonic moment is given by a
polynomial in x of order at most s. The angular distribution at any point
is then a polynomial in u of order at most s, and consequently it cannot
involve spherical harmonics of order higher than s. That is,

m,a(v) =0 forn > a. (22.48)

Moreover, m, ,(v) vanishes, by symmetry, unless » and s are either both
even or both odd.

The caloulation of the second spatial moment (say), in terms of the
quantities (22.44), can be carried out as follows. We multiply the firat
of (22.2) by 22, integrate over all space, and eliminate 8/0x by integration
by parts. This gives

M+,
a—

1 1. _ (M,+1)2 mg o(v') dov’
—2m1‘1(v)+[i,(—v—)+ Z m]mz.o(”) =2 5 i, f l::zv') peal

(22.464a)
where m, 4(v) is what we previously called m, ,,(v). Similarly, multiplying
the second of (22.2) by 3« and using (22.45), we obtain

—imaoo [+ S o ] mat)
(4 k (

v .

Myt

AN T m(v) (Mt 1)t — (M — 1t v’

o 2M, T 200’ v’
(22.46b)
where m, (v) is what we previously called n(v). Unless n(v) has already
been determined, the equations (22.46) must be supplemented by (22.10).
The equations to determine the higher moments can be constructed
similarly. However, it is more convenient to avoid the repetition of
identical algebraic operations, as follows. Let 3, (p,v) be the Fourier

transform of N, (x,v), i.e.

M (p,v) = J. N, (z, v)et?= dx;

then m..n(v) = (—i)’[a’M,,(p, ”)/ ap‘ ]p-o'
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Thus, taking the Fourier transform of (22.2), expanding the M,(p,v) in
powers of p, and collecting the terms in the (n+1)th equation which

contain p*, p"+3,... p*-* we obtain the required set of equations to
determine m, ,(v).

22.3.3. The second spatial moment in a single element without capture
Sinoe no new difficulties arise for higher moments, it is sufficient to
" discuss the determination of the second spatial moment, i.e. the solution
of (22.46). As with (22.10), we take first, the simple case of a single element
with no capture. It is seen from the equations (22.46) that they can be
solved one by one, whether or not capture is present, for either a single
. element or a mixture. We first solve (22.10), then (22.46b), and lastly
* (22.46a). For a single element without capture, each of these equations
is of the form

[10 oipeat) v = (o),
[

where a, b, and f are known functions and ¢ is unknown; these can
always be solved by the Mellin transform method (see § 22.2.1). The
amount of algebra required can, however, be minimized as follows
Since 3(vy—v) = (1/v,)(v/v,—1), Myo(v) can be expressed as

Moo(v) = n(v) = —‘g%?ho(%). (22.47)
where A,(y) satisfies

il
_ (M41y N s
hiy) = 5 E ’f W) +8-1).  (22.480)

The free term of (22.46b) can be written as
®,
—4 f Mool (ofoy—1) 224,
1
[1]
and so, if A, is the solution of
1

vV
S — ’ ’
h,(y)-gﬁ'_{l_)fj haty) HE I = (=18 dy
v

2 F3(y—1),

2yy y =1
(22.48D)

the solution of (22.46 b) can be written as

v\dy,

Maglo) = X0 f mopn(vl)hl(;- = (2249 b)
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the limits of integration being determined by the fact that My o(v,)

vanishes for v, > v,, while ky(v/v,) vanishes for v, < v. Similarly, we
obtain from (22.46a) and (22.48 a):

malo) = 210) | (o) 2. (22.492)
1
v
Combining (22.47), (22.49b), and (22.49a), we have the final expression
for myo(v). The slowing-down length is found by substituting these

results into (22.38), disregarding the difference between the latter and
(22.38), and using (22.42): :

Li(y) = W%Wo) fho(g)l(v')i‘gj hl(g;’)ho(%')l(v’)d—:;. (22.50)

Here hy(y) is, of course, the function n(v)/l(v) already studied in §22.2.1,"
and is best determined, over the first three collision intervals, by starting
at y = 1 and solving (22.484a) in each successive collision interval; for
lower energies, the asymptotio expression found by the Mellin transform

method can be used. The function ky(y) satisfies a similar equation and
can be similarly determined.

22.3.4. The case of a mizture and the higher spatial moments

For a mixture, with or without capture, where the ratios of the oross-
sections are constant, the method of the previous section may be applied.
Otherwise, the solution is much more difficult. Although the use of the
Pproperties of x(v) (see § 22.2.2) is some help in determining n(v) for this
case, and the same technique can be applied to equation (22.46a), no
counterpart of this method for (22.46b) is known. Multi-group theory
may be used, assuming the ratios of the cross-sections constant in each
group. The slowing-down length in each group can then be determined
as in §22.3.3, and the slowing-down length over the entire range by
(22.43), for instance. Another method, which can be used in conjunction
with this, is to regard the deviations of the cross-section ratios from their
mean values as small perturbations. It is beyond the scope of this book
to disouss the methods which have boen developed to solve (22.46) for
certain particular cases; a detailed acoount is given by Marshak (38,
especially pp. 203 f1.), who also discusses many other aspects of slowing-
down problems.

We have seen that the equations (22.46) can be solved one by one.
This is true for the higher moments also. The equation for m,,(v)
involves no other moments except m,_, ,,,(v) and m,_, ,_,(v).
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AGE THEORY

23.1. The assumptions underlying age theory

Lzt us now consider the spatial distribution of neutrons that have been
slowed down. As has been pointed out in §22.1.1, two types of problems
are to be distinguished; those concerning neutrons which have travelled
very much farther than the average distance from the source in reaching
the energy in question, and those concerning typical neutrons. If the
nuclei in the medium are sufficiently heavy, there is a comparatively
simple and yet fairly accurate approximate method of solution of the
latter type of problem, called age theory. It was first used by Bethe,
Korff, and Placzek (2), who derived it from a simplified physical model.
The formulation of age theory as an approximate method of solution of
the general transport equations (22.2"), as well as the rigorous investiga-

tion of its range of applicability, are due to Marshak (38), whose treat-
ment we shall largely follow.

The method is based on the following assumptions:

'(A) The angular distribution of neutrons is nearly isotropic,

(B) The quantity v3N(r, vQ), for fixed r and 2, varies smoothly with
lethargy and changes only slightly in one collision interval.

(C) The relevant cross-sections vary smoothly with lethargy and
.change only slightly in one collision interval.

(D) Capture is small.

(E) The same orders of smallness are referred to in the explicit forms
of (A) and (B). Those referred to in the explicit forms of (C) and (D) will,
of course, be of at least the same order as those in (A) and (B), if not

higher.

The assumption (A) is understood to mean that li{r,v)| is small
compared with x(r, v), while the higher spherical harmonic moments are
of higher orders of smallness. The phrase ‘varies smoothly with lethargy’
in (B) and (C) will be understood to mean that the second derivatives,
with respect to the lethargy, of the quantities concerned, multiplied by
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the square of the collision interval in lethargy, are of at least the second
order of small quantities.t v

The assumptions (C) and (D) refer only to the medium concerned. The
assumption (B) is a more precise expression of the statement that the
problem concerns regions populated by typical neutrons. The assump-
tions (A) and (E) are intermediate in nature, depending on both the
medium and the distances involved.

It will be convenient to determine first the form of the solution of
equations (22.2") under the above assumptions, and then to assess there-
from the range of applicability of these assumptions. However, we shall
first make some remarks about the derivation of the conditions (A), (B),
and (E), and the sense in which they represent the assumption of typical
neutrons.

The velocity dependence in regions populated by typical neutrons
should not differ very greatly from that which would have existed if the
sources were uniformly distributed in all space. In the latter case,
N(r,vQ) becomes equal to n(v), and the analysis of § 22.2 can be used.
If v is so close to v, (the initial velocity) that n(v) differs appreciably
from 7,4(v), it is hardly possible to speak of ‘typical neutrons’. We shall
therefore consider velocities for which n(v) is practically the same as
7aa(v), i.6. those which lie three collision intervals or more below v, We
know that, if the cross-sections are constant and capture is absent,
nas(v) i8 proportional to 1/v?, i.e. v2ne,(v) is constant. If there is some
variation in the cross-sections and some capture, but these lie within the
limits imposed by the conditions (C) and (D), then vny,(v) should vary
smoothly with v, and change only slightly in one collision interval. Thus
assumption (B) may be regarded as a definition, or part-definition, of the
regions of the four-dimensional (r,v) space occupied by the typical
neutrons of the system.

The assumptions (B) and (C) have referred to smooth variation with
lethargy, rather than with energy or velocity. This is partly because of
the analysis of formula (22.23), and partly because of the more general
considerations given in connexion with (22.30).

t The smoothness of a function $(z) in the interval (a, b) may be defined as

(b—a)f (‘:—i)'d«/ f l4(2)] dz f [%fl az.

Bince the quantities referred to in (B) and (C) are assumed to change only slightly in one
oollision interval, our use of the expression ‘varies smoothly” is in accordance with this
definition.
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The anisotropy of the neutron angular distribution in a volume-

velocity element dVdv of the region occupied by typical neutrons
- cannot be much higher than that of neutrons that are scattered into
dVdv. That is, the anisotropy of N(r,v) in this region is mainly
governed by the anisotropy of the right side of (22.1) for the given r
and v, and this, if (B) holds, is determined mainly by the anisotropy of

[ @) dv. (23.1)

If the scattering is isotropic in the ¢ system and the nuclei involved are

fairly heavy, the nth spherical harmonic moment of (23.1) is of the order
" of 1/M™ (see § 17.1). These considerations lead to the assumption (A). If
 v!N(r,vR2) and its derivatives with respect to lethargy are mutually

comparable, the quantities referred to as ‘small’ in the explicit form of
. (B)are essentially of the order of the collision interval in lethargy, and

this is of the order of 1/M for large M. Thus in this case the quantities
referred to as small in (B) are of the same order of magnitude as those
referred to as small in (A). This explains the introduction of assumption
(E). '

It is seen from the above considerations that, the heavier the nuclei
: involved, the better are the assumptions (A) and (E) satisfied. The same
. i8 true of (C), for a givenrate of variation of the cross-sections. However,
+ we prefer not to introduce directly the condition that the nuclei should
be heavy, since this would misleadingly underrate the range of applica-
bility of age theory. In the appropriate region of (r,v) space, the
assumptions (A) to (E) are found to be well satisfied even for M of the
order of 7, which can hardly be called heavy,

It would have been possible to avoid the introduction of assumption
(D). However, if (D) is violated in some medium over a considerable
range of velocities, the neutron population in that medium will be so
+ small that it will be of no interest to obtain a quantitative solution of the
slowing-down problem for this medium. If the capture is appreciable

only over a narrow resonance, then it is assumption (C), rather than (D),
which is violated.,

23.2. The basic equation of age theory

23.2.1. The reduction of the Boltzmann equation

We shall now apply the above assumptions to simplify the transport
equation (22.2). As has already been remarked, assumption (A) means
that, in the notation of (22.2"), [Ny(r, v, W), (i.e. .j(r, v)) is small
compared with n(r, v), [Ny(r, v, W)];,.., is of thesecond order of smallness,
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and so on. Thus, if we work to the first order, we shall need only the
first two equations (22.2%), i.e. only (22.3), and the first term in the
second of (22.3) is omitted also.

The assumptions (B) and (C) imply that, if we expand the quantities
v'n(r, '), v'%(r, v’'), I,(v') and I, x(v') in powers of the lethargy difference
u'—u = 2log(v/v') about the point v’ = v, v and ¢’ lying in the same
collision interval (|u’'—u| < max 4;), the second term in each series will
be small compared with the first, while the third and subsequent terms
will be of at least the second order of smallness,

Substituting these series in (22.3) and using assumption (E), we collect:

the terms of the zero and first orders of smallness. The former cancel by
the identity

Mil”
M+ a1
oM VviT @A
Putting Mat1, )
ST Mt — (M — 1) gy’
b,,=v’( 5‘;") f %t )”2W(’ x—1)v ;’:'_8.
M”_:’ ‘ (23.2)
M4+ dv’
£y =0o® (-—-——é‘;h ) f 2103(% .bi’)i' |
and also
S L ) S b )5 & 23.3
Lv) Z L(v)’ l,(v) Z Llv) l,(v) Z L) (23.3)
we obtain from the first-order terms
. n(r,v) 1 2 [v*(v)n(r,v)
i)+ = o o) 5.0
and grad n(r,v)+-3 1—b(v) i(r,v) = 0.

L(v)
The derivatives with respect to v do not enter into the second of (23.4),
since each term in the second of (22.3) i itself of at least the first order of
smallness, and thus only the leading terms in the expansions of v'%j(r, v'),
etoe., appear. -

There is a simple physical interpretation of the quantities (23.2) and
(23.3). If we substitute in (23.2) v’ = v¥/v" and use (2.16), we see that by
is the probability that a neutron of initial velocity v which collides with
a nucleus of mass M, will have a final velocity between v and v 4-dv”,
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multiplied by the ocosine of the angle of scattering and integrated over
all v°*. Thus b, is the mean cosine of the angle of scattering in collisions
with nuclei of mass M,, i.e. nuclei of the kth kind. Since [,(v)/l,,(v) is
the probability that a given scattering is at a nucleus of the kth kind, it
follows that b(v) is the mean cosine of the scattering angle for neutrons
of velocity v in the given medium. Similarly, £, is the mean logarithmic
energy loss per collision (i.e. the mean lethargy gain per collision) for
collisions with the kth kind of nucleus, whilst £(v)isthe mean logarithmio
energy loss for all collisions of neutrons with velocity v in the given
medium,

23.2.2. The egquation for the slowing-down density

The equations (23.4) should now be put in a more convenient form and
related to the conditions at the initial energy. This process is simplified
if the unknown function is taken as v*(v)n(r,v)/l,(v). In general this
quantity does not have a simple physical interpretation, but when the
assumptions (B) and (C) are satisfied (i.e. when the equations (23.4) form
a valid approximation), it is approximately equal to another quantity
which has a simple physical meaning. If we start from the expression
(22.7) for the slowing-down density x(r, v), expand v'2n(r, v’), [ ('), and
1, x(v') in powers of log(v'/v) in accordance with assumptions (B) and (C),
and integrate, terminating the expansion at the first term, we obtain

_ (M —1y M,,+1] 1
X = w3 [1- P loggehy [0
~+terms which are small when (B) and (C) hold.

Evaluating the second integral in (23.2), comparing with this expression,
and using (23.3), we get?
x(r,v) = v¥(v)n(r, v)/2l,(v)+terms small when (B) and (C) hold. (23.5)
Combining (23.4) and (23.5) and eliminating n(r,v) and j(r,v), we
. obtain the following equation for the slowing-down density:

_ 31—bp)] 3 vE(o)[1—b(v)) %
Vix(r,v) = WX(":”)—'E —_—W—E{’,

t The result (23.5) could have been foreseen as follows. For the case of no capture, con-

+  stant cross-section ratios and uniform sources, and for velocities where n(v) is practically
g.ho 8210 88 Ny,(v), the number of neutrons slowed down past v per unit time and volume

. is equal to the neutron collision density per unit lethargy interval multiplied by the

. mean lethargy gain per collision, i.e.

' x(v) = £ viigg(u)fl, = £ vng,(v)/2,

. When the assumptions (B), (C), and (D) are satisfied, the relation between x(r, v) and

n(r, v} should be essentially the same as in the idealized situation just discussed. Hence
{28.8) follows.

(23.8)
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which is valid in the same region and to at least the same acouracy as
(23.4).

We now consider the relation of (23.6) to the conditions at the initial
energy. Thisinvolves the incorporation of a free term in (23.8), which will
be proportional to the three-dimensional delta function 34(r), since we
have a point source at r = 0. The coefficient of 35(r) is, of course, the

same a8 for sources uniformly distributed in all space. In the latter case
formula (22.9) gives

dx(v)/dv = — 88(v—v,)+-vn(v)/l,(v),

where . is the source strength per unit volume; to incorporate the source
term into tho corresponding equation for x(v), it is sufficient to replace
dx(v)/dvby [dx(v)/dv+ 88(v—n,)]. The corresponding change in equation
(23.8) for the case of a point source is to replace dx(r, v)/ov by

[ox(r, v)/ov+ S8(v— 9)35(1)],

where S is now the strength of this point source. We shall refer to
equation (23.6) thus altered as (23.6").

It might be inferred by analogy with the results of § 22.2.3 that the
equation (23.6) gives a fairly good approximation for all v up to and
including v,. This, however, is not so. Although the energy dependenoce
of | [f x(r,v) AV is much smoother than that of [[] n(r,v) dV, there
is no reason to suppose that, for a highly localized source, the variation
of x(r, v) for a given r is any smoother than that of »(r, v). The equation
(23.8'), like (23.4), is therefore a valid approximation only when assump-
tion (B) is satisfied, i.e. only for velocities at least a few collision intervals
below v,. However, for velocities many collision intervals below Vg,
equation (23.6') takes into account, to a very good approximation, the
strength and position of the initial source. This can be seen as follows.
Under the assumptions (C) and (D), it follows from the discussion of
§ 22.2.3 that equation (23.6") leads to a fairly good approximation to the
slowing-down density integrated over all space. We need therefore
consider only the spatial variation of x(r, v). Where assumption (B) is
inapplicable, i.e. over the first few collision intervals, the spread of this
variation is of a few mean paths only, whether it is determined exactly
or by applying (23.6') up to and including v = v,. For lethargies very
large compared with the collision interval, it is thus immaterial whether
x(r,v) is determined in the first few collision intervals exactly or by
applying (23.6") up to and including v = v,.
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23.2.3. The age of the neutrons

In order to put the equation (23.6') in a still more convenient form, we
_ introduce, instead of the velocity, a new independent variable

-4 _2f _ Be) d
0 = vy >v) = 3 E(—”')T_——b(vl)] - (23.7)

and represent y(r,v) in the form

x(r,v) = p(v)x,(r, v), (23.8)
- where p(v) is the solution of
plv) _ . £(v)dp
o)~ = v L) v’ (23.9a)
with the initial condition
P(v) = L. (23.9b)

The equation for x,(r,v) is then identical with (23.6’), except that the
term proportional to 1/,(v) isnow absent. If §is taken as the independent
variable instead of v, this equation for x(r,v) becomes

0x0/00 = Vixo-+83(0)3,(r). (23.10)
This equation is identical in form with the time-dependent equation of
heat conduction, with § playing the part of the time. For this reason 6 is
called the Fermi age, the symbolic age, or simply the age of the neutrons.
A more direct physical interpretation of the age may be given as
follows. In an infinite medium, there cannot be any supply of neutrons

from infinity in slowing-down problems, and the boundary condition on
the solution of (23.10) is clearly

Xo(r,v) = 0 for |[r| =

It can be verified that the solution of (23 10) under this boundary condi-
tion is

XolT, ¥) = T 0), el (28.11)

Ifx(r v)is gwen by (23.8) and (23.11), the value of {r(v))*, as defined
by (22.38') is simply

[[frermav] [[f eneay = os.

In other words, according to the definition (22.42), the age 8(v, —> v) is

equal to the square of the slowing-down length as calculated on the
assumptions of age theory:

0(vo > v) = [L}(vy > v)]ge- (23.12)
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The solution of (23.9a) with the initial condition (23.9D) is olearly

—2 Fi0) v ]

p(v) = exp[ 1) T8 | (23.13)

and since, by (23.11), [[[ x,(r,v) dV = 8, we have also

Sp(v) = [ f J’ J’ X(r,v) dV]m. (23.14)

The result (23.11) can be expressed by saying that, for a point source
in an infinite medium, the spatial distribution of neutrons of any energy
appreciably below the initial energy, in the region ocoupied by typical
neutrons, is approximately Gaussian, This could have been foreseen,
gince this spatial distribution arises by the superposition of a large
number of random events, namely individual collisions, and this should
be approximately Gaussian by the statistical law of large numbers.

23.2.4. Modified age theory. The effects of resonance capture

The results of the preceding section allow an a posleriori test of the
accuracy of age theory over the region populated by typical neutrons of
the system, for a given medium. To make this test, it is sufficient to
compare the value of [[[ x(r,»)dV as given by (23.13) and (23.14) with
the more accurate value obtained by the methods of §22.2, and to
compare the value of the slowing-down length as given by (23.7) and
(23.12) with the more acourate value obtained by solving the equations
of § 22.3.

This also suggests a modification of age theory which is widely used in
practice but has not yet acquired a generally accepted name. We shall
call it modified age theory. It consists in retaining the form (23.8) for
the slowing-down density and the equation (23.10) derived above for
Xo(T, v), but using for p(v) not (23.13), but the expression p(v) == x()/8,
where y(v) is the slowing-down density integrated over all spaoce; this is
best determined by the methods of § 22.2 or by experiment. For the age
6 we use, instead of (23.7), the square of the slowing-down length ; this
is best determined by solving the equations of § 22.3 or by experiment.

This modification is of particular interest since it allows age theory to
be applied even when the assumption (C) is not well satisfied, provided
that we are still conoerned with regions populated by typical neutrons.
For instance, if the medium has a sharp capture resonance extending over
a few collision intervals only, the main effect is to reduce the total number
of neutrons present, rather than to alter the spatial distribution, since

3596.99 A8 . .
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formula (23.11) shows that the majority of neutrons are found in the
region where the spatial variation of y(r,v) is slight. Thus the main
effect of violating assumption (C) is that 8- [[[ x(r,v)dV differs
from p(v) as given by (23.13). The deviations of Sx(r,v)/ [[[ x(r’,v)dV"’
from (28.11) are lees important. If, therefore, we determine p(v) by
the methods of § 22.2 instead of using (23.13), the main error due to the
violation of assumption (C) will be eliminated without introducing any
comparable new error.

The second most important effect of the violation of assumption (C)
at a capture resonance is the deviation of L? from the approximate value
given by (23.7) and (23.12). This can be seen as follows. The deviation
of the true L? from the approximate value given by (23.7) and (23.12),
arising at a capture resonance, will persist for all lower energies, as
follows from (22.43). On the other hand, the remarks at the end of
§23.2.3 imply that any deviation of x(r, v) from the best fitting Gaussian,
arising at a resonance, will be progressively reduced at lower energies.
This confirms that the second most important effect of the violation of
assumption (C) is the deviation of L? from the value given by (23.7) and
(23.12). Thus, disregarding for the moment any other deviation of (23.7)
from the best available value of L2, we can say that the use of this value
for 8 instead of (23.7) eliminates the second most important error due to
the violation of assumption (C), without introducing any comparable
new error.

The following remark may be made regarding the deviations of (23.7)
from the best available value of L2 which are not due to the resonances.
The only justification for applying (23.6’) over the first few collision
intervals below the initial energy is that this can result in an error of
at most O(%3) in 8. Thus, if the best available value of L3 differs from
(23.7) by a constant multiple of I, then the use of this value instead of
(23.7) for the age will correct the error in question without introducing
any comparable new error.

Finally, it must be borne in mind that we have argued in § 23.1 that it
is better to assume va(r,v) to vary smoothly with lethargy than with
velocity; that is, it is more profitable to expand v'Zn(r,v') in powers of
log(v’/v) than in powers of v'—v. This simply meant that the expansion.
in powers of log(v'/v) ensures that the neglected terms are small. An
expansion in powers of v'—v would have led to the same equations (23.8)
and (23.10), though with inferior p(v) and 6(v, — v) (i.e. differing more
markedly than do (23.13) and (23.7) from the correct values of
8- ”f x(r,v) &V and of L?). However, the arguments of § 23.1 do not
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preclude the possibility of the existence of a function s(v) such that
expanding v'*n(r, v’) in powers of s(v’) —s(v) would be still more profitable
than expanding it in powers of log(v’/»). In particular, it should be
possible to find &(v) such that the age obtained is identical (apart from an
added constant of the order of I§) with the best available value of L2,
These considerations suggest that the modified age theory should

always be an improvement, if only a slight one, on the original age theory
of § 23.2.3. ‘

23.3. The range of applicability of age theory

We shall now estimate the range of applicability of age theory. To do
80, we start with the solution given by age theory and find the region in
which it satisfies the assumptions underlying the theory. For the sake
of simplicity, we take first a non-capturing medium, where p(v) = 1 for

all v, so that x(r,v) is the same as y4(r,v). Combining (23.11) and (23. 5),
we have

»(?) &
n(r,v) = me"’/"# ), (23.15)

where, in accordance with (23.12), we have written 6(v) as L3(v). Com-
bining this with the second of (23.4) we obtain

, l

jro) = g l_'b(f:;i T3, 0 (23.16)
According to assumption (A), j(r,v) should be small compared with
n(r,v). The equation (23.16) then shows that assumption (A) can be

satisfied only 1f r < 6[1—b(v)]LE(v)/1,(v). (23.17)

To assess the range of applicability of assumption (B), we should compare

the value of }q,,d[v*n(r,v)]/d(logv) (where g,, is the collision interval in
lethargy) with that of v2n(r, v) itself, and the value of

3021 d[v%(r, v))/d(log v)
with that of v%(r,v). Formula (23.15) gives

dvn(r, v)] _ gur? LX) | gy dlogll,(v)/E(v) L2(v)]
dau dlogv = vinlr, v)[sltl‘(v) dlogv'*"‘M dlogv ]

(23.18)
and a similar relation is obtained from (23.16). Using ordinary age

theory, i.e. defining L? by (23.7) and (23.12), the condition that the first
term in the brackets in (23.18) is small is clearly

7* < 12{(0) qal 1-b(0) [ L3 (0) L, () " (23.19)
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Using modified age theory, i.e. the best available value of L2 instead of
(23.7) and (23.12), the same inequality is obtained, since the order of
magnitude of dL}(v)/d(log v) cannot be affected, even though the actual
value is somewhat different from that found by ordinary age theory.
The second term in the brackets in (23.18) and in the correspond-
ing expression for }g,, d[v%(r,v)}/d(logv) will be small, provided that
assumption (C) holds and that }g, d(log L})/d(logv) is small. By
(23.7) and (23.12), this latter condition is essentially equivalent to

I l(v) € f lt(v’)'-ii,'. (23.20)

This condition means simply that age theory cannot be applicable
within the first few collision intervals below the initial energy, a faot
which has already been pointed out in the derivation.

If hydrogen is present in appreciable amounts, the collision interval
gy in lethargy is infinite, and (23.19) and (23.20) are certainly violated.
This means that age theory is at best a poor approximation for hydro-
genous media. '

For non-hydrogenous media, £(v) and g,, are each of the order of 1 /M,
i.e. they are mutually comparable, and the condition (28.19) is essentially
identical with (23.17). All these considerations can, of course, be
immediately extended to the case where capture is present.

We have considered above only the validity of the approximations
made for a particular v. However,if the solution of (23.6") (i.e., effectively,
(23.11)) is to give the correct answer, the approximations made must
have been valid during almost the whole slowing down of the neutron
to velocity v. This will, in general, reduce somewhat the range of
applicability of age theory. If the effect in question is taken into account,
the inequality (23.17) must be replaced by ’

r < 6L3(v)/ max {I,(v")/[1—b(v")]}, (23.17)
with a similar alteration of (23.20):
e Mmax IB(v') < l}(v’)d—'f—'. (23.20')
V<Y<V, - v

v

The detailed proof of (23.17’) is rather lengthy, but the necessity of
replacing [,(v) by max[,(v') (v < v’ < v,) can be seen as follows. Let us
consider neutrons which have been slowed down from v, to v’ near the
souroce, travelled to r without collision, and been slowed down from v’ to
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v near r. The contribution of these neutrons to n(r,v), apart from a
numerical factor, is given by

S 1 e

L3(vg > v') L3(v' - v) r?
For r sufficiently large, (23.11) decreases faster than (23.21) as r increases,
and will eventually be smaller than (23.21). At this point, age theory is
certainly inapplicable. The two expressions are readily seen to be
comparable for 7 of the order of L3(v)/l,(+'). Since v’ can have any value
in (v, v,), this means that age theory will certainly break down for r of

the order of Liv) /,,f,l,,af,.l' ), .

which is essentially the same as (23.17’),

The above discussion shows also that, beyond the range of applicability
of age theory, i.e. when (23.17') is no longer satisfied, the decrease of
n(r,v) for fixed v and increasing r is retarded, and the Gaussian shape of
the curve gradually becomes nearly exponential. We shall give in
Chapters XXIV to XXVI a more detailed discussion of the behaviour
of n(r,v) in this region.

I, (23.21)

23.4. The boundary conditions and methods of solution of the
age equations

23.4.1. The boundary condstions

We shall leave until § 23.6 the discussion of possible improvements in
age theory, and examine first the applications of this theory in its present
form,

Formula (23.11) for the case of an infinite medium could have been
derived directly, without using (23.10). The main advantage of being
able to use (23.10) is that it allows solutions to be obtained for finite media
and for systems containing more than one medium. The boundary
conditions to be used in the solution of (23.10) in such cases are found
a8 follows. Since the higher spherical harmonic moments have been
neglected in deriving (23.4), age theory may be regarded as a P, approxi-
mation, and the boundary conditions for that approximation may be
taken over. That is, at an interface we stipulate that n(r,v) and the
normal component of j(r,v) are continuous functions of r for all y. In
terms of x,(r,v), using (23.5), (23.8), and the second of (23.4), these
conditions become

PO)(0)xo(r, v)/E(v)  is continuous

PO)__aiyy 2l,0)
and 0 ) KA

, (23.22)

18 conlinuous
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where 2x,/on is the normal compenent of grad y,, and p(v) is, of course,
calculated separately for each medium.

For the free surface, we proceed as follows. In the lower-order spherical
harmonics approximations, and in particular the P, approximation, it
is known that Marshak’s boundary conditions are always preferable to

Mark’s boundary conditions (see § 10.3.6). In the P, approximation,
Marshak’s boundary conditions are

jn(r’ v) = *n(r! v),
where j,(r,v) is the component of j along the outward normal to the

surface. Combining this with the second of (23.4) and expressing the
result in terms of x,(r, v), we obtain

2 L(v) ax(r,v) _
x°(r, v)+§ mm T =0 at the f!‘ee surface, (23.23)

where 9y,/2n is the component of grad x, along the outward normal.

23.4.2. Analytical methods of solution of the age equations

If the mean free paths concerned are independent of the velocity, the
boundary conditions (23.22) and (23.23) are of the form usually found
in problems of heat conduction, and the methods developed in the latter
subject can be used to solve (23.10); the most general method is as follows.
If all the mean free paths are constant, the age § as given by (23.7) is .
proportional in each medium to the lethargy u, while p(v) in each
medium is of the form 7%, where y is constant in each medium. Taking
the Laplace transform of (23.10) and of the boundary conditions (23.22)
and (23.23) with respect to the lethargy, we obtain a differential equation
in the spatial coordinates only. On solving this equation and taking the
inverse Laplace transform, we find x,(r, v).

This method can be immediately extended to the case where the mean
free paths follow the same law of variation in each medium, while either
the free surfaces are absent or the relevant geometrical dimensions are
8o large compared with /,(v) that (23.23) can be approximated by

Xo(r,v) = 0 at the free surface, (23.24)

and all the media are non-capturing. In this case, although the ages are
no longer proportional to the lethargy, the ages in any two media are
proportional. The agein some chosen medium, which we call the reference
medium, can then be taken as the independent variable throughout the
system, and the Laplace transform of equations (23.10) can be taken in
every medium with respect to the age in the reference medium. Since all
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the nuclei are assumed to be non-capturing, p(v) will not appear, and
since [,(v)/£(v) on one side of the interface is proportional to its value on
the other side, the first condition (23.22) is equivalent to the condition
that x,(r, v) on one side of the interface is proportional to its value on the
other side. Hence the Laplace transform of y,(r,v) with respect to the
age in the reference medium will satisfy the same condition. The second
condition (23.22) will be transformed similarly. Thus the solution can
be obtained by the same means as in the case of constant mean free
paths.

Further simplifications often arise in the above two cases which allow
the solution to be obtained without using the method of Laplace trans-
forms. For instance, if we have a bare slab with a point source of fast
neutrons inside it, and the distance from this point to either face of the
slab is so large compared with [,(v) that (23.23) may be approximated by
(23.24), the solution of (23.10) can easily be obtained by the well-known
method of images. Similar simplifications ocour in several other cases.

23.4.3. Numerical methods; the direct approach

If the mean free paths in the different media do not follow the same
law of variation, or if (23.23) cannot be safely approximated by (23.24),
and the velocity dependenceof /,(v)in (23.23)has to be taken into account,
the solution of (23.10) is much more difficult. An analytical solution is
hardly ever available, and numerical methods of solution must be
employed. The general principles of the numerical methods of solving
the heat conduction equation are well known; we introduoce a network of
points in the (r, v)space,approximate the derivatives by finite differences,
and solve the resulting system of algebraic equations, If v, is the ith
velocity value in the network, ry, is the mth point in the spatial network,

and x;m = Xo(Tm, ¥;), the best way of converting (23.10) into a finite
difference equation is to represent it as

Xitrm— Xtm = (V) ti1,m+ (VEX)im)s (23.25)

where (V%) m = 2; O’ X'

the summation being extended over m’ = m and its nearest neigh-
bours. The step from 4 to i+1 may be made either by solving the
simultaneous equations for the x;., ., (16), or by iteration. The equa-
tion (23.25) is recommended because of its stability; that is, if (23.25)
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is used, the accumulated effect of the rounding-off errors can nover
become appreciable. The equation : :

Xi+lam = X¢m +A0(V’X)i.m

- is stable only if Af is sufficiently small; the stability criterion cannot
~ be given explicitly except in the simplest cases.

If only a single medium is concerned, and the necessity of numerical
methods arises only because of the boundary condition (23.23), we should

" choose the v, 80 as to obtain equal intervals of age for this medium. If
. the system involves several media, and the ages in them, as functions of

velocity, are not simply related, the v should represent oqual intervals

" of lethargy.

In adopting the numerical procedure described, we no longer take full
advantage of the fact that the integrals in (22.3) are expressed in terms
of x(r,v) and dx/ef. Thus, if numerical procedures are to be used, we

. can equally well start with equations (22.3), neglecting [N,(r, v, W)l a1

eliminate j(r,v), and expreas all the integrals involved in terms of the
n(r, v) values at the network points. This more direct procedure has the
advantage that the collision interval need not be small, and so hydro-
genous media can be dealt with. Inelastic scattering also can be taken

. into account without additional difficulty, whereas it is very awkward

to incorporate it into ordinary age theory. The direct approach was

~ first suggested by Ehrlich and Hurwitz (16), and was applied to the cage
- of inelastio scattering by Mandl (31).

" 23.5. Application of age theory to spectrum-regeneration

problems

23.5.1. Modified two-group theory: general considerations
After developing age theory, we return in the Present section to

; spectrum-regeneration problems. In dealing with these it is sometimes

. necessary to solve an auxiliary slowing-down problem, and age theory
. is often used for this purpose. Forinstance, leta body consist of a mixture

AV I

of fisaile material and a moderator of fairly light nuclei, the latter having

. & very small capture probability per collision, with the additional
- conditions that the thermal fission cross-gection is (as is usual) much

greater than the fast fissiont cross-section, while the mean free path for

. thermal fission is at most comparable with that for thermal capture in
+ the light nuclei. This system is, of course, a homogeneous thermal
. reactor. In such a medium, a fast neutron will rapidly lose energy in

t i.e. fission by non-thermal neutrons,
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collisions with the moderator, and the probability that it will cause fast
fission is negligiblysmall. The system is, however, spectrum-regenerating,
since a thermal neutron has a finite probability of causing fission. It
may be advantageous to consider the fast and thermal neutrons
separately in such a system. If the spatial distribution of fissions is
given, the determination of the fast neutron distribution for any
partioular energy may be regarded as an auxiliary slowing-down problem.,
Its solution gives, inter alia, the distribution of neutrons which are just
becoming thermal, Using these as the thermal neutron souroes, we oan
use the methods of Part II to find the complete distribution of thermal
noutrons, and thus of flssions.

This troatment is a form of two-group theory, but whereas the thermal
neutrons are treated in the manner of Chapter XIX, a more acourate
method is used for the fast group, namely the solution of the auxiliary
slowing-down problem. We have seen that the essential limitations on
the age-theory treatment of slowing-down problems are given by the
inequalities (23.17’) and (23.20°). In the present application, we are
concerned only with fast neutrons which are just becoming thermal, and
the inequality (23.20’) is certainly satisfied for these, at least for non-
hydrogenous media. The inequality (23.17’) has been derived for the
case of a point source, for which the neutron density (from & unit source)
at the distances where (23.17’) no longer holds is

O(e-Lim)

(see (23.11)), and this is usually extremely small. Consequently, if
instead of a point source we have fast neutron sources distributed in the
medium (as in the case considered), and the source density does not vary
rapidly with position, the great majority of fast neutrons of a given
velocity v at a point come from sources so near that point that (23.17') is
satisfied. The contribution of the sources which are 80 remote from the
point that (23.17°) does not hold can be neglected. This inequality
therefore does not affect the Present application. Another restriction
on the applicability of age theory is that the cross-sections do not vary
rapidly. However, the error incurred by violating this condition can be
greatly reduced by using modified age theory (§ 23.2.4) instead of ordinary
age theory. Thus age theory should be fully adequate for solving the
auxiliary slowing-down problem in non-hydrogenous media.

23.5.2. Modified two-group theory: the form of the equations
We shall now write down the equations of modified two-group theory
a8 formulated in the preceding section, and for simplicity we take first
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~ the case of an infinite medium, i.e. where the solution of (23.10) is given

by (23.11). Since age theory is essentially equivalent to a solution of

equations (22.2") in the F, approximation, it would be somewhat incon-
" sistent to use an approximation higher than P, in dealing with the
diffusion of thermal neutrons. Since the anisotropy of the fast neutron
distribution is small, and so is the anisotropy of scattering, the anisotropy
in the angular distribution of neutrons after a collision is of the second
order of small quantities, and can be neglected in the present approxima-
tion. This applies, in particular, to neutrons whioh have just become
thermal, so that the thermal neutron sources may be regarded as iso-
tropic.t The equations of one-group theory in the P, approximation,
with anisotropic scattering and isotropic sources, are

divi(r)+ 1ot ey o) (23.263)
lwt,th
and gradp(r)+3 1= oen fonsen j(r) =0, (23.26b)
Liotn

from (17.35’), since ¥, = p, etc.; p(r) and j(r) are the flux and current
of thermal neutrons, s,(r) is the thermal source density, that is, the
number of neutrons that become just thermal at r per unit time and
volume, and Uyt ¢, ben, 80d Cep fin - 1, aTe respectively the total mean free
path, mean cosine of the scattering angle, and mean number of thermal
secondaries per collision, for thermal neutrons. The last three quantities
should, of course, be interpreted as the averages over the thermal
spectrum of the corresponding velocity-dependent quantities Iy (v),
b(v), eto., the averaging being performed as shown in connexion with
(4.13). The mean number of secondaries is expressed as the product of
two factors for convenience in pagsing from the auxiliary one-group

problem to the actual problem. From the definitions (1.5) and (1.7) we

have
l—co fnom 1 , 1
Icofoom 1

biot,tn letn L

We shall now consider s,(r) more closely. The quantity p(r)/l;sn
represents the number of neutrons which cause fissions at r per unit
time and volume, and is therefore the number of fissions, so that the
number of neutrons produced in fission at r per unit time and volume
is vp(r)/l;4n. Since the medium extends to infinity, the slowing-down

(23.27)

+ It may seem inconsistent, in view of this, to have retained b(v) in the second of
(23.4), but there we were dealing with a large number of collisions and wished to preclude
the possibility of an accumulated error; here only a single collision in & neutron’s history
is concerned. The situation is similar to that encountered in the derivation of (22.41).
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density from a point source is given by (23.8) and (23.11), while the
slowing-down density from the actual source distribution is

1 4 NV 1 2\ o —tpmp’|t ’

2 }:2(.(”_)) = J‘ J' f p(r)e-IF-FALYw g, (23.28)
where, as in (23.15), we have expressed the age in terms of the slowing-
down length. On the other hand, s,(r) in (23.26a) is the number of
neutrons that become thermal at r per unit time and volume, and it is
therefore the slowing-down density for the velocity »* which is chosen as
the boundary between fast and thermal neutrons, Thus 8,(r)in (23.26 a)
is the value of (23.28) for v = v*. The best choice of v*is, of course, rather
uncertain, but p(v*) and L,(v*) are comparatively insensitive to the
actual choice made, and we can therefore speak simply of the capture
escape probability and slowing-down length from fission to thermal
energy. We call these p and L, respectively. Then (23.26a) becomes

divj(r)+(ﬁ+,ﬁ)p(r) ~ sl [[[ steree-rruns ar,

(23.29a)
where we have also used equation (23.27).

Equations (23.29a) and (23.26b) are the basic equations of the
modified two-group theory. However, it is often preferred to introduce
certain changes in (23.26b). Firstly, since by, is usually fairly small,
while ¢y fintn 18 close to unity, 1—by, €y finn can usually be replaced
by 1—by,. Secondly, a comparison with (5.15) suggests that, if we
replace Ui i, in (23.26 b) by I, ¢y, (the thermal scattering mean free path),
this will to some extent compensate the error involved in the P, approxi-
mation. With these modifications, equation (23.26 b) becomes

grad p(r)+3 ll_::h i(r) = 0. (23.29b)

Eliminating j(r) between the equations (23.29) and introducing the
abbreviations

L= [ la.tb lc,th l!.t,h ] *
3(1—bgy ) (b en+1pen)

. (23.30)
and = eth
. f LestntUrm
we obtain

‘(VL Zl.i)p(r) - 8_”.,% f f f p(r')e-te-rals g, (23.31)

On comparing the first of (23.30) with (23.27) and (5.18 b), we can see
that L represents an approximation to the diffusion length for thermal
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~ where the suffixes th and fa denote thermal and fast, and the suffix is

. omitted from p,, and j,,. We have assumed, for the same reasons as

. before, that the anisotropy in the distribution of neutrons passing from
one group to the other can be negleoted.

- Changing the third and fourth of (23.39) in the same way as (23.26 b),

eliminating j(r) and j,(r), and using

Cofistalbioten = Vg SaotatSoatn = 1
~ and the abbreviations (23.30) together with

ll.ta ltot 1a *
L= [3(1 bu)(l"'cuftu—m)] (2340
(O —Ctafrostalesn lrsn
snd . ¢(r) - lbot.fs(lc th+ll.th) P a(r)»
we obtain (V’— -—)P (r) = Cta—CtaSta—sta P(T)
1—Cufut L (23.41)
and (V’— 7 )$(r) = — "flf’(r)

Let us compare (23.41) with (23.31). Since the latter as it stands is
valid only for an infinite medium, we shall make the comparison for this

case. To facilitate comparison, we put (23.41) into a form as similar as
~ possible to (23.31), by converting it into an integro-differential equation;
we do this by solving the second of (23.41) for ¢(r) in terms of p(r), with
the appropriate boundary conditions, and then substituting into the
first of (23.41). The boundary condition in question for an infinite
medium is that, if p(r) is bounded at infinity, so is ¢(r). Eliminating ¢(r)
in this way, we get

1 Cta—Ctafearta 1 ol av’
(7= gp =~ gy [ [ [ e 25
(23.42)
Since the present treatment is much less accurate than that given in
§23.5.2, (23.31) may be regarded as exact. Itisthen seen that to combine
all the fast neutrons into a single group is equivalent to approximating
the Gaussian kernel by an exponential kernel. Ifsuch an approximation

is a reasonable one, we should require, first of all, that the integrals of the
two kernels over all space are equal, and this gives

Cta—Ctattasta
1—ceoftasta

=p, (23.43)
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where p is the capture escape probability. This condition could have
been foreseen from the definitions of ¢,, and Stasta: Secondly, both
(23.31) and (23.42) should lead to the same solution for an infinite

medium. For fyp sufficiently near unity, this means that L, =L,
or, by (23.40),

lytal
Lt = a.fa “tot,ta . 23.44
' 3(1 by )(I—Cen frammta) ( )

If the system concerned has geometrical dimensions large compared
with L,, the solution in it does not differ appreciably from that in an
infinite medium. Thus, if (23.43) and (23.44) are satisfied, (23.42) should
be & reasonable approximation to (23.31), even though the actual shape
of the kernel is rather different.

The conditions (23.43) and (23.44) are eagily found to have the
following simple meaning. The constants used for the fast group, i.e.
Ctas Jtasrtar ©tC., should be such as to give the correct values of the zero
and second spatial moments of the neutrons passing from the fast to the
thermal group, for a fast point source in an infinite medium. At the
beginning of Chapter XIX we said that these constants might be
regarded as given experimentally. In actual fact, at least for the kind of
medium considered in the present section, we should simply use (23.43)
and (23.44) together with the known values of p and L2,

If, instead of treating all the fast neutrons as a single group, we sub-
divide them into groups covering about equal intervals of lethargy,
and then proceed as in the derivation of (23.42), i.e. start with the P,
approximation and eliminate all the currents and fast fluxes, obtaining
an integro-differential equation of the form

(vuﬁ)p(r) - f f f K(lr—r'l)P(L—l:) v’ (23.45)

for the thermal flux, the kernel K(jr—r’|) of this equation will rapidly
tend to that of (23.31) as the number of groups increases. This can be
seen from the general statistical argument leading to the Gaussian kernel,
and has also been confirmed by direct calculation. Conversely, if we
start with the method of §23.5.2 but, instead of attempting to solve
(23.10) analytically, replace it by a difference-differential equation
(difference in v and differential in space), we shall clearly return to
ordinary multi-group theory.

This may be regarded as an alternative derivation of multi-group
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theory, although it is restricted to large systemsand the P, approximation.
However, the derivation given in §§19.2.2 and 19.2.3 also supposed
that large systems were concerned. In the alternative derivation, no
appeal is made to the constancy of the cross-sections in each group. This
oonstancy is largely irrelevant to the comparison between (23.45) and
(23.31). Thus, except possibly for small systems or approximations
higher than F,, the constancy of the cross-sections in each group does
not affeot the accuracy attainable by multi-group theory so much as
doea the number and spacing of the groups in lethargy.

23.6. Improvements in age theory. Other methods for moderate

distances

We now return to slowing-down problems and examine methods other
than age theory for determining the slowing-down density at moderate
distances from the gource. There are two kinds of situation here, namely
those where the assumptions underlying age theory are valid, but greater
accuracy is desired, and those where age theory breaks down altogether.
In the former case the procedure is evident, at least in principle. We
start with the same equations (22.2"), and with the same estimate of the
orders of magnitude involved, but retain terms up to the second or third
order of smallness, instead of only the first. The resulting equations can
easily be written down, but their analytic solution ishardly everavailable,
80 that numerical methods must be used for their solution. Since the
terms taken into acoount in ordinary age theory are the leading terms
(provided that the assumptions underlying that theory remain valid),
whereas the terms introduced in the higher approximations represent a
small correction, the perturbation method also should prove fruitful.
However, not much detailed work has yet been done in this direction.
If numerical methods are adopted, it may be advantageous to improve
the direct approach of § 23.4.3 rather than age theory itself. Just as the
direct approach there outlined represents the P, approximation, so we
can easily develop a direct approach using the F, or higher approxima-
tions. Again, not much detailed work has been done here. This is partly
because of the laborious calculations involved in such improvements on
age theory, and partly because the accuracy of the result given by age
theory in the regions where it is applicable is adequate for most practical
purposes.

A more important question is that of determining the solution for
cases where age theory breaks down. As we have seen from the deriva-
tion of age theory, there are four such situations: (1) the distances at
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which (23.17) is violated; (2) the veloocities at which (28.20°) is violated;
(3) hydrogenous media; (4) too rapid variation of the cross-sections.

The first of these will be discussed in Chapters XXIV to XXVI. The
most important of the other three is the case of hydrogenous media.
A semi-empirical method of the kind mentioned in §19.7 is the most
successful in finding the distribution of neutrons just becoming thermal,
but it does not give the spectrum for intermediate energies. For the
latter purpose, the direct approach of § 23.4.3 seems to be promising,
although it is still largely untried, having been suggested comparatively
recently. Another possibility is the Monte Carlo method. The poly-
nomial approximations method of §20.4.3 has proved successful in
determining the spectrum of neutrons reflected from a hydrogenous
medium, though it probably cannot give high accuracy in the interior
of a hydrogenous medium,

For hydrogenous media, unlike many non-hydrogenous ones, L,(v)
is not much greater than max L(v') (v < v’ < v,), and thus (23.17") will
be violated even at moderate distances from the source. We shall
therefore discuss hydrogenous media again in Chapter XXV.

The case (4), i.e. where the cross-sections vary rapidly, can generally
be dealt with by modified age theory (see § 23.2.4), If higher acouracy is
needed, the perturbation method can be applied to the P, approximation
form of equations (22.2%), i.e. (22.3).

The cage (2), i.e. where the velocities are such that (23.20°) is violated,
has not yet received much attention as regards non-hydrogenous media.
This is primarily due to the lack of interest in this situation. Mono-
chromatic sources are seldom found, and one is seldom interested in
the slowing-down density within a few collision intervals of the source
energy.

8505 .99 Bb



XXIV

BLOWED-DOWN NEUTRONS AT LARGE DISTANCES
FROM THE SOURCE. THE CASE OF CONSTANT
CROSS-SECTIONS

24.1. A qualitative discussion

Wz here conclude our discussion of the distribution of slowed-down
neutrons at moderate distances from the source, and turn to the third and
last type of slowing-down problem, that of determining the distribution
at large distances from the source. By ‘large’ distances we mean those
at which the condition (23.17) does not hold, and consequently age theory
is no longer applicable. This condition was derived from the assumption
that the neutron distribution is nearly isotropic for each r and ». For
the distances which we now consider, this assumption is no longer valid;
on the contrary, we should expect N(r,vQ) to be strongly anisotropioc
foragivenr and v. The physical reason for this is as follows. The regions
oconcerned are occupied by neutrons which have penetrated exceptionally
far from the source in losing a given amount of energy. It follows from
(2.16) that, the smaller the scattering angle, the less the energy loss in
the collision. Thus a neutron is most likely to travel far without losing
much energy if it is scattered through only a small angle in each collision;
further, a neutron for which the small deflexions at each collision
neutralize one another will travel farther from the source than one for
which these small deflexions reinforce one another. Thus, for any given
velocity, the neutrons moving directly away from the source predominate
at sufficiently large distances, and this effect is the more pronounced
the greater the distance from the source. The effect is most distinctly
seen when the mean free paths for the various processes are independent
of the energy, and as the distance from the source tends to infinity, we
should expeot the angular dependence for each v to tend to a delta funo-
tion. If, however, the mean free path varies with the energy, another
effect will come into play. If the mean free path has its largest value in
the velocity interval (v,v,) at v,, say, then a neutron is most likely to
travel far from the source in reaching velocity v if it is slowed down from
v, t0 v’ o« v; near the source, travels with velocity v’ to the neighbourhood
of the point r concerned, and is then slowed down from ' to » near r.
This effect tends to diminish somewhat the predominance of the direc-



XXIVv,§1 A QUALITATIVE DISCUSSION 371

tions away from the source, as compared with the case of constant mean
free path.

The anisotropy of the angular distribution and its dependence on the
variation of the cross-sections with energy have no direct effect on the
use of the Monte Carlo method; the main difficulty in this type of problem
is that the number of neutrons found at large distances in & given velocity
interval is very small in comparison with the initial output of the source.
It is therefore imperative to use the most refined methods of sampling
described in §16.9. Otherwise, there is no appreciable difference from
the application of Monte Carlo in other types of problem. Analytical
methods, however, are noticeably complicated by the strong anisotropy
of the angular distribution and its sensitivity to the law of variation of
the cross-sections, and only a few comparatively simple cases have so
far been investigated. In particular, only the case of an infinite homo-
geneous medium has so far been considered. The only types of energy
dependence of the mean free path that have been discussed are those
where the mean free path either is constantt or decreases monotonic-
ally with decreasing energy, and can be approximated by a simple
analytical function of a certain type (see (25.1) and (25.3) below).

Thus the Monte Carlo method seems more effective than the analytical
methods in determining the distribution of slowed-down neutrons at
large distances from the source. However, since the Monte Carlo method
has already been described in Chapter X VI, we shall now discuss only
the analytical methods. In the present chapter we shall consider the
case of constant cross-sections, and in the next chapter that of variable
cross-sections.

Only the quantity «(r,v), rather than the angular distribution
N(r,vR), is usually of interest. Since for an infinite homogeneous
medium =n(r, v) for any source distribution can be expressed in terms of
that for a plane source (see the footnote to (5.44)), we shall discuss only
the case of a plane source.

The following order of presentation will be convenient. First, dis-
regarding the above qualitative considerations, we shall construot a
formal solution of the equations (22.2) for the case of a plane source and

1 It might bo supposed that the case of constant moan free path haas boon adequately
examined, for the cage of an infinite homogeneous medium, in Chapters V and XVII.
However, we were there concerned only with the neutron flux, and no attention was paid
to the variation. of the energy spectrum with position, which is now our main concern.
In Chapter V, moreover, the anisotropy of scattering in the L system was neglected
altogether, whilst in Chapter XVII only a few leading terms were taken into account;
here we have to take the anisotropy into account as accurately as possible.
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oonstant cross-sections. This solution will not be immediately suitable
for numerical work, but it will include most of the techniques used in
the more efficient methods. Next, using the qualitative considerations
. given above, we shall examine the possible modifications in the formal
solution which would improve its ability to deal with the main difficulty
in these problems, i.e. the strong anisotropy of the neutron distribution at
large distances from the source. Several alternatives corresponding to
different situations will be noticed, and we shall then describe these in
greater detail.

24.2. The formal solution

24.2.1. The method of Fourier—Mellin transforms

To obtain a formal solution of the equations (22.2) for the case of a
plane source in an infinite homogeneous medium with constant cross-
sections, we can proceed as follows. We take the Fourier transform of
these equations with respect to the spatial coordinate x (measured

perpendicular to the source plane) and their Mellin transform with respect
to the velocity, putting :

1 w «
(P, ) = = | v11dv | N,(x,v)e= dz, (24.1)
al e

where p and 7 are the Fourier and Mellin transform variables respec-
tively, and obtain

P[0+ 1) (B, 1)+ (P, )] +{(2n+1)/D[1—g, ()b (p, )

= (8/v§) 3,0, (24.2)
where we have put for brevity

1
(Mp41)2 1 ap | (M4-1)y2— (M, —1)
In(n) = Z "'-2&}7&— i;ﬂf:/" an[ k %y k ]dy,

=l (24.3)
and !is the total mean free path (I-1 = I;14 3 ;). The way in which p
and 7 appear in (24.2) could have been foreseen from what was said in

§§ 4.3 and 5.3; they occur as parameters, i.e. (24.2) can be solved for each

pair of values of p and 7 independently, unlike the situation we shall ind
in Chapter XXV,

The equations (24.2) are very similar to those found in Chapter X, and
by proceeding as in the derivation of (10.22) we can show that the
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solution of (24.2) for $o(2, 1), for example, can be expressed in the form
(given by Waller (51)):

$ol(py7) = Si/v} p? 4p¥3 oplls
"= g+ A=)+ BT =) + T —ga) e
It is seen from (24.3) that, for any fixed 7, g,(n) tends to zero as n tends
to infinity. The region ot convergence of the continued fraction forming
the denominator of (24.4) is therefore the same as that of (10.22),
except that v is replaced by ipl. That is, (24.4) converges in the complex
p-plane cut along the imaginary axis from p = —ioo to P = —ifl and
from p = i/lto p = s0. The quantity ¢,(p, n) is thus determined in the
cut p-plane, and the other ¢,(p, ) can then be readily determined by
using the equations (24.2) one by one. Having determined the éa(p, 1),

we can find the corresponding N, (z, v) by inverting the double transform
(24.1).

24.2.2. The inversion of the Fourier transform

A double numerical integration would be required in order to obtain
N, (z,v) exactly. However, this can be avoided if only the leading term
in Ny(=, v) for large z is of interest. By taking the Mellin transform of the
equations (22.2) with respect to the velocity, we reduce the problem to
a one-velocity problem (see § 4.3), for which the equation (18.3) always
has a solution.t In other words, for every 1 there is at least one value of
p, which we denote by i/L(y), such that the homogeneous system of
equations corresponding to (24.2) has a solution, whilst the inhomo-
geneous system (24.2) itself has not. Thus, as p tends to /L(n), ¢o(2,7)
should tend to infinity, and therefore has a pole at p = 4/L(x). Since
$4(P, 1) is an even function of p (see (24.4)), p = —i/L(n)is another pole,
8o that the poles appear in pairs, as in Chapter XVII. To distinguish the
poles forming a pair, we shall take im[4/L(n)] > 0.

If nis real and positive, and the integral (24.1) converges, |¢,(p, 5)] will
obviously be greater for p purely imaginary than for any complex P
with the same imaginary part and non-zero real part. If 7 is real and
positive, the poles nearest the real axis therefore lie on the imaginary
p-axis, i.e. L(n)is real and, by the above convention, positive, Since the
poles concerned must lie in the cut plane, L(n) > I. If 5 is complex but
its imaginary part is small, re » being positive, the position of the poles
should be near their position for real Ppositive 7, i.e. the pair of poles

t The fact that (18.3) for the original problem has no solution simply means that the
eigenvalue of (18.3) for the transformed problem is a function of y.
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" nearest the real p-axis will be the one tending to the pair described above
for im# = 0. It can also be shown that these two poles are necessarily
simple poles.

The conclusions stated imply that ¢y(p,n) can be expressed as

1Y (n)
FHLm T |

+terms regular in the strip 0 > im p > —[re{1/L(n)}+¢€],
(24.5)

where ¢’ is any small positive quantity. Here the values of L(») and
of the residue i Y () of ¢,(p, n) at the pole concerned will be determined
from (24.4).

We now take the case 2 > 0, say, substitute (24.6) into the Fourier
transform inversion formula and deform the path of integration as in

§ 5.3, obtaining

$o(P,n) =

,f—afvﬂ-wx. v) dv = eV (1) + Ta, ), (24.6)
0

where T'(z,7) represents the sum of terms decreasing faster than
e~%/L) ag z > o0, and is consequently negligible for large . If z is not
necessarily positive, then it is replaced by |x| on the right side of (24.6).

24.2.3. The inversion of the Mellin transform. The method of steepest

descent ‘

Let us now consider the inversion of the Mellin transform. Retaining
only the leading term for large « in (24.6), and substituting it into the
Mellin transform inversion formula, we obtain

1 foto
New) sz [ explnloglon/o)—lel LY (n) dn.  (247)
—two+o
If Y(n) and L(n)/L,, where L, is some fixed length, vary with % at a
comparable rate, and |x| > L,, then the first factor in the integrand of
(24.7) varies much more rapidly with % than the second factor. The
first factor has a saddle-point at the root n = 7, of the equation

log(vo/v) = |#l[d{1/L(9)}/dn),-y,. (24.8)
A more detailed examination of the continued fraction (24.4) shows that
d*{1/L(n)}/dn* < 0 for 7 real and positive, (24.9)

and the first factor in the of (24.7) therefore integrand behaves as follows
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for n near n,. For real », the factor has a minimum for 5 = »,, whilst if
7 = me+1{ where { is real, the factor has a maximum for { = 0. Thus, if
the path of integration in (24.7) is chosen to pass through % = 7, i.e.
we make the substitution % = 7,-4-4{, where { is real, the first factor in
the integrand can be approximated for small { by a Gaussian, and the
slowly varying second factor by its value at n = =,, whilst, when { ia
not small, the first factor in the integrand becomes so small that the
contribution of this region to the value of (24.7) can be neglected. Thus
(24.7) can be approximated by

No(-’”» v)
= Yo, [ exp{4%iel] 25 75| ) aexplonglogtonso)— kel o)
e 7"Ne. )

Y(ng
= TSRO LYy, e o8t~ e/l (2410

the quantity under the radical sign being positive, by (24.9). The
method just described for reducing (24.7) to (24.10) is called the saddle-
point method or the method of steepest descent.t The error involved in
applying this method can be estimated as follows. After expanding
[nlog(vy/v)— |2|/L(n)] in powers of n—u, we do not terminate the
expansion at the quadratic term, but include some further terms; we

then expand ,
exp[_lxl(n—no)‘lﬂ 1} +]
0=

31 \dn® L(n)

in powers of n—1,, substitute in (24.7) and integrate term by term, The
relative correction to (24.10) is thus found to be of the order

L {@l/ L(n))/dn*}- ( ! {al/L(n)}/dn*} -m) ,

o|— L. ol Ol — . (24.10
(roteni) + Ol @) @)
The coefficients of I/|x| in these expressions depend on 74, which depends
on z. However, using a result obtained in § 24.5 below, it can be shown

that, as |z| tends to infinity, these coefficients tend to finite limits, and

then (24.10') provides a rigorous justification of the method of steepest
descent. .

t This latter term is due to the fact that, with the contour chosen, the first factor in
the integrand decreases more rapidly as we move away from the saddle-point than it
would along any other path through the saddle-point. If d*{l/L(n)]/d»® were complex for
3 = 7, the path of steepest descent would no longer be parallel to the imaginary axis.
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24.2.4. Discussion. An alternative Jorm of the results
Formula (24.8) allows us to establish a qualitative relation between
* no and z. For L(n) is olearly the diffusion length in the transformed
. problem. If 4 is taken large, this means that, in arriving at the trans-
. formed problem, a high weight is given to neutrons with nearly the
initial velocity. In the limit as n = 00, only the neutrons of the initial
velocity will give any contribution. In that case, however, every
scattered neutron will be treated as though it were captured, and the
- diffusion length therefore coincides with the mean free path (cf. (5.5)
: With¢ = 0). Thus lim L(y) = I, (24.11)
7+
- and it can easily be seen that the approach to this limit should be
monotonic. Since, a8 7 — 00, I/ L(7) tends monotonically to a finite limit,
its derivative should tend to zero, and then the formula (24.8) implies
that, as || tends to infinity, so does 7,. A moredetailed analysis on these
- lines shows that 7, increases monotonically with |z|.
" The fact that 5, tends monotonically to infinity with |z| could have
- been foreseen as follows. As we move ‘away from the source, the neutron
* énergy spectrum becomes more and more degraded. Consequently, if
. || increases while 1 is fixed, the relative contribution of a given velocity
" interval dv decreases to zero as |z| - co, For a given velocity interval
it is therefore necessary to increage 7 88 |z| increases.

Since d[l/L(x)]/dn is a monotonic function of 7, (24.10) can be re-
. Wwritten in a slightly more convenient form. Solving (24.8) for 7, and .

substituting in (24.10), we can express the result in the form

_ 1 & - |2 logYe|.
) = e (l log<vo/v>)°“’[ " (l log<vo/v>) % v]
, 24.12
The functions F and H in (24.12) are defined by ( ‘
Ao _dn gyl dn
Z(n) dYL@) " (d[l/L(v)]) (24.13)

d dyp |\ _ dn ’
e T, {8 i) = * i)
* &8 may easily be verified. To evaluate H and F, of course, we first
evaluate dn/d[l/L(x)] and the left sides of (24.13) as functions of y, and
then eliminate .
The solution derived above is rigorous, but we have referred to it asa
formal solution, since the procedure given above to determine L(n) is
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rather unsuitable for numerical work. Sinoe we are interested in large
values of [x|, 4, will be large also, by the conclusions derived from
(24.11), For large 5 and n fairly small, g, (5) will be comparable with
unity, a8 may be seen from (24.8). Thus, if (24.4) is to be used to deter-
mine L(x), a large number of gn(n) will have to be evaluated, which is
very troublesome except in the case of pure hydrogen. '

24.3. Preliminary survey of the more effective analytical methods
available

We now turn to the more effective analytical methods, i.e. those
which aim at removing the difficulty just mentioned, and at putting the
calculation in a more manageable form. The basio features, such as
the use of Fourier and Mellin transforms, the method of residues and the
saddle-point method, will, of course, be retained. We shall seek more
effective methods of determining the various éa(p, 7). In doing 80, we
shall bear in mind that it is the anisotropy which brings about the
difficulty mentioned above,

It has been remarked in § 24.1 that, for a constant mean freo path, the
angular distribution of N(z,v, 1) should tend to 8(x—1) as z tends to
infinity. Since §(u—1) = 13 (2n+1)P,(u), this means that, as z —» 0,
the various coefficients N, (z, v) in the expansion

N(z,v,p) = 4_1" i (@n-F1)N, (z, )P, (u) (24.14)

n=0
tend to become equal, and the main contribution to (24.14) will come
from very large values of n. The series (24.14) can therefore be approxi-
mated, for sufficiently large 2, by the integral

N(z,0,p) == 51; J' vN,(z, v)P(s) dv, (24.15)
1]

where v is a continuous variable which replaces the subsoript # in (24.14).
For such an angular distribiition, moreover, the main contribution to
n(z, v) comes from the directions for which p 2 1, i.e. from small values
of the angle § = cos~!u between the direction Q of the neutron and the
z-axis. For large v and small 6, P(cosd) is approximately equal to
Jo(v6), where J, is the Bessel function (see (22), p. 99), so that (24.15)
can be approximated by

N(z,v,c086) o % J' Nz, v\l dv. (24.16)
[ ]
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" Similarly, the quantity

;,:_11 Non@,0)+5— 1 N, sz, v) (24.17)
~ can be approximated by
[1+ (d,,+ )]N (2, v), (24.18)

so that (22.2) and (24.2) become differential equations in ». This is the
- basis of Wick’s asymptotic solution, which will be described in § 24.5.

Apart from the above limiting case discussed by Wick, we shall have
to deal with the situation where, although a large number of terms in
the series (24.14) have to be taken into account, it cannot yet be approxi-
mated by an integral, and neither can (24.17) be approximated by (24.18).
Several methods of dealing with this situation have been suggested. The
simplest of these, for the case of constant cross-sections, is due to Bethe,
who begins by observing that, as we have remarked in §23.5.2, the
angular distribution of neutrons emerging from a collision is rather less
anisotropic than that of neutrons undergoing a collision. Provceding as
in §2.5 or § 17.2, we can express the angular distribution of neutrons at
any point in terms of the angular distribution of neutrons emerging from
collisions throughout space. This transformation, however, amounts to
passing from the Boltzmann integro-differential equation to the integral
equation. If, therefore, we start from the integral equation instead of
the corresponding Boltzmann equation, we have instead of (24.14)
another series which converges rather better. The details of this pro-
cedure are given in § 24.4 below.

The ranges of values of || considered by Bethe’s and Wick’s methods
almost, but not quite, meet. The gap can be bridged by interpolation in
suitable variables. A more systematic method of doing so has been
developed by Holte; his ideas, however, are most naturally applied to
problems where the cross-sections are variable. We shall therefore leave
the discussion of Holte’s method until Chapter XXVI,

24.4. Bethe’s method

24.4.1. General outline of the method

In this section we shall discuss the method suggested by Bethe (1). As
already mentioned, the essential feature of this method which distin-
guishes it from that given in §24.2 is that the Boltzmann equation is
first converted into an integral equation. To do so, it is convenient to
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write the Boltzmann equation in the form
Mb+1

F—N(x v,p-)—}- Nx.v,y.) Z(gn.*_l)p”( )Z(é”’;;,:l) J‘ dv
n=0

X N, (z,v') pﬂ[(Mk+ l)v’;vtf}lk—l)v”] + 450 oS(v——vo) 8(z). (24.19)

This is, of course, an intermediate stage in the transformation of (22.1)
into (22.2), for the case of a plane source and constant cross-sections.
Taking the Fourier and Mellin transforms of (24.19) as in the derivation
of (24.2), using the abbreviations (24.3) and multiplying by l, we obtain

(l—tpln)qS(p,n,#)——Z(2n+1)9,.(n)¢,.(p.n) W)+ g (2420)

where ¢(p, , ) is defined, similarly to (24.1), by

Hp,mp) = ;1:-‘_[ v1-1dy f N(z, v, u)et?® dx, (24.21)
1] -0

so that $a(2,m) = [ $(m,m, 1) Palps) dp. (24.22)

Converting (24.19) into an integral equation and then taking the
Fourier and Mellin transforms is clearly equivalent to starting with
(24.20) and dividing by 1—4iplu. On doing this, expanding the resulting
equation in spherical harmonies, writing

- o) Brelpr) E, (1) Fp(p)
A e (ipl) 417]' _f T—ipla dQ = J' i dp, (24.28)

and using (24.22), we obtain

$u(D,n) = A»o('Pl)+ Z (20 + 1) (1)dw (D N Ann(ipl),  (24.24)

which replace the equations (24.2) of § 24.2.

We have seen that, to invert the double tranaform (24.1), we need to
know the poles of ¢,(p, 1), while the position of these poles is given by the
values of p for which the homogeneous forms of (24.2), and therefore the
homogeneous forms of (24.24), have a solution. Since the determinant
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+ of the coefficients of the ¢, should then vanish, we obtain, denoting this

. value of p by —i/L(x) as before, the following determinantal equation
. for L(x):

Fo(m Aol L(n)]—~1  3gy(n)Ae,[Y/ ()] 595(n) 4ol ()] .
SoMAalYLin)]  3gu(mAu[lL(M]—1  8gy(n) Ayl Lin)] .

=0. (24.25)

. In practice, of course, this infinite-order determinant will be replaced
. by the finite-order determinant formed by the first few rows and columns
+ of (24.25). The convergence of these determinants for any given 7,

. however, is much better, as we should expect, than that of the continued
. fraction (24.4).

24.4.2. The evaluation of the residue

In order to apply the formula (24.12), the residue i¥ () of do(p, ) at
the pole determined above must also be evaluated. This is most simply
done by eliminating all the ¢,(p, 7) except ¢y(p, ) from the equations
(24.24), thus obtaining an equation for $o(p, 1), and determining the
, Tequired residue from the latter equation. To eliminate éa(p, ) for
- n 2 1, we notice that the free terms in (24.24) are proportional to the

coefficients of $4(p,7) on the right sides of those equations. Thus,
introducing new unknown functions

¢n(p9 7])
9o(n)po(®, 1)+ S[v3’ (24.26)

and dividing the equations (24.24) forn > 1 by [go(n)de(p, 7)+8/v8], we
obtain

wy(p, 1) =

wu(p! 7’) = Am(‘.?l)+.§£2ﬂ'+1)9’.’('])4,;»'(‘.1’1)‘”1.'(?» 7)) (n = l)y
(24.27)

which is a set of inhomogeneous equations to determine w,(p, 7).

Expressing ¢,(p, 7) for n > 1 in terms of w,(p, 1) in the first equation
(24.24), we find

$o(2, 1)
= [GalnMba(2, 1)+ 8Y/o3)[ A osliph) +§1(2n+ a4 waliplern(p; 1)),
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and solving this for ¢,(p, ) we have

Sl

Bg(n)

_ : Si/v3g3(n) .
Aooip)—[Hga(m+ 3 (2n-+1)gu(n) 4 iphon(p, )

4’0(?» n) = —

(24.28)

On the other hand, ¥(x), which we require, was defined by
i¥(n) = lim o+l Lingo(m, )]

v p+—1iL(y
(see (24.5)). Substituting from (24.28) and using de I’Hépital’s rule to
evaluate the indefinite expressionsof the form 0/0, we obtain

Y(n)

= i8I / {,,3 ga(-y));;[Aw(ipl)-l-'len-l— 1)0,,(11)Ao,,(ipl)w,.(p,-n)]L__mm.

(24.29)
This formula might at first sight seem to necessitate the differentiation
of quantities obtained numerically. This, however, is eagily avoided.
If we expand the w,(p,) in powers of [¢#pl—1/L(n)], putting
wy(p, 1) = “’M(ﬂ)+[ipl_l/L(’7)]wnl("))+O{[‘pl—l/L(n)].}’ (24.30)
the equations (24.27) give at onoe

wpo(n) = A,.o{l/L(n)}+“f_: 21+ 1)g () Al L(n)}wuo(n)  (24.31)
and -
an(n) = [ {4ust+ 3 e+ ot dme)] -+
dv ) v=llLin)
+ 2 V0 Al Linonaln), - (20.32)
and substituting (24.30) in (24.29), we have

N

S L)
Y(n) = m[ zl (2n+1)gn(n) A onll/ L(n)}ewpy(n)+

d o | -1
+3 {4000+ 3 @t Dgamdmbla(m)| . (24.33)
dv n=1 v=YLfn)
The actual caleulation is then as follows. For each 7, I/ L(7n) is calculated
from (24.25); then w,(7) is found by solving (24.31), and the free term
in (24.32) is determined. Then (24.32) can besolved, and ¥ (n) determined
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from (24.33). The functions H and F can then be evaluated from (24.13),
and (24.12) can be applied.

24.4.3. A single fairly heavy element

The actual form of the functions H and F defined in (24.13) depends
on the masses of the nuclei present, and on the relative probabilities of
oollision with each kind of nucleus. If only a single fairly heavy element
is present, however, the evaluation of the functions (24.13) for each mass
number separately can be replaced by the evaluation of certain functions
independent of M. This can be done as follows. We first notice that 5
appears in L(n) and Y () only through the solutions of (24.25), (24.31),
and (24.32), i.e. only a8 g,(n). Thus, if we put n = K3, L() = L(#), and
Y(n) = Y(#), and introduce new functions H and F defined by relations
analogous to (24.13), the new functions will be related to the old ones by

KH(w) = H(Kw) and <K F(w) = F(Kw). (24.34)

It can easily be verified that, for M > 1 and n < M3, g,(») depends, to
a first approximation, only on n/M. For, transforming (24.3) in the same
manner as in the derivation of (17.5), we obtain for the case of a single
element

1

— +

gnln) = % J‘ P(s) M(%i'll L,)i [(M : ﬂ}f:) +"]" ds, (24.35)
el

where ¢ = [/, is the probability that a neutron is scattered and not
captured. Neglecting quantities of the orders of 5/M2, 1/M?, and
(1—c)/M, we can approximate the above expression by

galn) = [1+-——<1—c>] f Pys )[ii“{’,ﬁ] ds,  (24.36)

ORI (VS Y FYNDR
-1

Also, sinoe M appears only in g,(7), it follows from (24.37) that, if we take
K = 1/M in (24.34), H(w) and F(w) should be of the form

H(o) = Hyw)— (——1+c) ).
, (24.38)
F(w) = Fo(w)—-(ﬂ—l-{—c)Fl(w)Jr—...
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where Hy, ), F,, and F, are independent of M and ¢, and H, is positive.
In terms of these functions, the formula (24.12) can be rewritten

=L F(PNexp|—am (=N (2 _11o)am (2]
Ny(z,v) = (2,,{3)&1'0(113)“1)[ ﬁﬁ“(lﬁ)+(M 1+c)uﬁl(ﬁ)], (24.39)
where % = M log(vy/v), (24.40)
and terms of the order of [(2/M)—1+-c] are neglected, except in the
exponent. The functions H,, H,, and F, have been tabulated by Bethe,

Tonks, and Hurwitz (3) and by Price (42), whose values are given in
Table IV.

TaBLE IV
Values of the functions used in Bethe’s method
w Ho(w) Hy(w) | Folw)
0 0 0 1-225

0-08748 | 0-003394 | 0-00126 | 1-210
0-14005 | 0-014346 | 0-00899 | 1165
0-22418 | 0-035501 | 0-02177 | 1-005
0-32008 | 0-072671 | 0-04171 | 1-002
0-47460 | 0-13833 0-07217 | 0-892
0-69736 | 0-26176 0-12041 | 0-766
1-0995 0-52545 0-20204 | 0-625
2-0518 1-2478 0-3724 0-469
6-315 4-937 0-926 0-291

The successive entries correspond to equal intervals of U L(y).

24.4.4. The connexion with age theory

As was pointed out in connexion with (24.11), the less the distance
from the source, the smaller is 7,. On the other hand (24.37) shows, on
account of the orthogonality of the Legendre polynomials, that
gn(n) = O[(n/M)"] for small n/M. Thus, the smaller 5,/M, the sooner
we can terminate the infinite determinant (24.25) and the infinite sums
in (24.31)-(24.33). In particular, for sufficiently small z and large M,

we can approximate (24.25) by
Jo(n) oot/ L(n)]—1 22 0,
while (24.33) can be approximated by
8 dv
Y(n) m[_] :
) & ) T etz

Using the explicit expressions for 44, and g,(n) from (24.23) and (24.37),
performing the integration and expanding the resulting expressions in

(24.41)
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’ powers of I/L(n) and »/M (which are small in the present case), and
* retaining only the first few terms, we have

Aol L(n)] = 14-}13/ L*(n) }
=St 2= b
i) = 3 (14+%7)

. where we now again consider a mixture of elements, The coefficient of
‘9 in the second of (24.42) is closely related to £(v), the mean logarithmio
energy loss per collision, defined by (23.3). If all the M, are large, and
. the cross-sections are independent of the energy, the expression for £(v)
* in the first approximation is

1
£=2 , 24.43
A 2 T (24.43)
- 80 that the second of (24.42) can be rewritten

go(n) = [14-3£(2—7)].
Combining this with the first of (24.42) and the equations (24.41), and

. evaluating the corresponding expressions for H and F from the defini-
tions (24.13), retaining only the first term, we obtain

H(w) = §fw-+2(1—c)/¢—2,
. F(w) = (S[lwd)(3/¢N,
where ¢ is replaced by unity except in (1—c).
With these expressions for H and F, the formula (24.12) becomes

No(-’”a v) =

(24.42)

S 1
= ~(Z AL~ A1—c)Eog(ralv) .
@I, Jﬂe = A (24.44)
where we have used the fact that in the Present case formulae (23.7) and
(23.12) give

It = 'log”;. (24.45)

2l

3¢
From (23.8), (23.11), (23.13), and (23.5), we see that (24.44) coincides
with the expression given by age theory for this case. That is, for small
distances Bethe’s theory reduces to age theory, as it should.

24.5. Wick’s asymptotic solution for constant cross-sections
24.5.1. The approximate form of the equation
Bethe’s method, described above, is fairly successful in dealing with
the case of constant cross-sections, provided that |z|/ld, i.e. |x|}/3L2, is
. small (see (24.45), together with (24.40) and (24.43)). As this quantity
increases, however, the values of 7/Mj, increase also (see the discussion
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following (24.11)), and more terms have to be retained in the infinite
determinant (24.25). For |x|l/3L2 = 6-315 (the last value given in Table
1V), the calculation is quite laborious, and for somewhat bigher values
of |z| the method is quite impracticable. We shall therefore now consider
a different method, designed to give the asymptotic solution for |z| - 0.
This method is due to Wick (54); a preliminary account was given by
Marshak (38, p. 231). For the sake of gimplicity, we shall describe it for
~ the case of a single element with no capture. As already mentioned in
§24.3, the basic idea of Wick’s method consists in approximating the
sum (24.14) by the integral (24.15), or rather by (24.16), while (24.17) is
replaced by (24.18). This latter procedure means that (24.2) are approxi-
mated by differential equations in the parameter v introduced in (24.15).
To justify these approximations as rigorously as possible we proceed as
follows,

Let us take the Fourier—Mellin transform of equation (22.1) instead

of 222). Putting (1, 1, 0086) = §(p,,0), (24.46)
where = cos~1y and ¢ is defined by (24.21), we then have

(—ipleos0)f(p, 7,6) = [[ $(p, n,0)9(@, n) 4+ Slj4me, (24.47)
where @ == cos-(2.LQ'), and

1

M1y M41)yr—(M—1

9(0,7) = (“4‘%})— 5[008@-—( + )y2y ( )]y'q-l dy
M

(M 412 (M*—gin*@)t+008 O
[ "

= M (MP—sin®O) M1 (24.48)

as can easily be seen by using the substitution
(A= 1P a) (M +1) = .

In order to put the integral equation (24.47) in & more manageable
form, we first examine more olosely (24.48). We already know, from
the discussion following (24.11), that, as || tends to infinity, », (i.e. the
value of 5 which interests us) also tends to infinity. The quantity in
(24.48) which is to be raised to the power 7 is unity for © = 0, less
than unity for @ s 0, and regular near ® = 0. It is known that, under
such conditions, the function can always be approximated by & Gaussian,

If we put 9(0,7) = Ae-BO[1+0,04+C,08-+..], (24.49)

therefore, the quantities C; @4, C,0¢, ete., can be regarded as perturba-
tions of increasing orders of smallness,
359599 [2X 1}
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On evaluating the coefficients in (24.49), we obtain

1 1\2
B=l/[p_1 (24.50)
=m\""m) '

1 3 3\2

We now look for further possible simplifications in equation (24.47).
It has already been mentioned that, as z — oo, the angular dependence
of N(z,v, ) should tend to a delta function. For 5 -» co, the angular
dependence of §(p, 7,6) should therefore also tend to a delta function,
a conclusion which could have been more directly reached from the
arguments leading to (24.11). Thus the quantities appearing in (24.47)
need be accurately treated only near 6 = 0. We can therefore put

cosf o~ 1—168,
02 =~ 621 6'*—200' cos(dp—¢'),
mf o o de’ d¢l
(where ¢ and ¢’ are the azimuthal angles of & and '), treating the
further terms not given on the right side as small perturbations.

We have seen in § 24.2 that the value of p is needed only in the vicinity
of —i/L(n), and, according to (24.11), L(n) tends to ! as n tends to
infinity. Thus ipl will be very close to unity, and can be replaced by
unity exoept in the difference 1—ipl. Combining this with the first of
(24.51), we have 1 . 110066 o (1—ipl)+}6% (24.52)

Since the values of 1—ipl concerned are themselves small, the second

term in the expansion of cos 6 has to be taken into account, as well as
the term equal to unity.

Substituting (24.52), the last two of (24.51), and the leading term of

(24.49) into (24.27), we obtain, as a first approximation to the latter,
the equation

(1—ipl)@*(p, 1, 6) = —16*¢°(p, 7, 6)+ Sl/dmo}+
]
(i) [[ et o av o,

(24.53)

where §%(p, , 6) is the first approximation to §(», 7, 8), the 0 being placed
as a superscript to avoid any possible confusion with the spherical

(24.51)
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harmonic moments; the difference [§(p, 4, 8)—¢°(p, 1,6)] can be ob-
tained by means of the perturbation method. The integration over 8’ in
(24.53) can be extonded to infinity.

24.5.2. The application of Bessel transforms

The approximation of dQ’ by 6’d6’d¢’ and the extension of the integra-
tion over 6’ to infinity is equivalent to replacing the sphere || == 1, i.e,
the locus of the end-point of the unit vector &, by a plane; here 8 plays
the part of the radial coordinate. Thus # = §cos¢ and £ == §sind may
be regarded as the Cartesian coordinates in this plane. Taking the two-
dimensional Fourier transform with respect to 7 and £, we can easily
convert (24.53) into a differential equation. Let v, and v, be the corre-
sponding transform parameters, and v? = v3+2; since §%p, 7, 8) depends
only on the radial coordinate and not on § and 2 separately, its transform
depends only on v and not on v, and v, separately. Thus we can put

[] B, V@200t dy dz = ©(p,m,v),  (24.54)
while the application of the two-dimensional Fourier transform to
(24.53) then gives

(A—iph02(p, .9) =[5+ 1]+ S a0 00(p, )+

+8I5(v)/2nd,  (24.55)

where we have used the relations

f“ ety dy — 21;-8(11”) and 8(1'”)8(".) = 8(")/ 2mv,

and the fact that (9%/2v2)-(9%/av:), operating on a function of » only, is
equal to (d2/dv?)4(1/v)(d/dv).

Using the integral representation of the Bessel functions, we can
easily see that the definition (24.54) is the same as

Op, ) = 2m [ $(p, n, O)J(+0)9 do. (24.56)
[}]

The application of the inversion theorem to (24.56) gives

.70 = 3 [ @, 1,00p



388 LARGE DISTANCES FROM THE SOURCE XXIV,§5

which is, of course, equivalent to (24.16). Similarly, the appearance of
the operator }(d*/dv?)-+(1 [2v)(d/dv) was anticipated in (24.18).
It is usually preferable to change the scale of v by putting

8 = My[2/(Mn—1)]} = /v (24.57)
The equation (24.55) then becomes

My—1)(1—inl
L—:’_j}(,—'g-)@(ﬁ ¥ 8)

d’ 1 d 1 1\2 —te*{po 2
___{474_;5.,.5 142 ) e }d) (B, 1,v08)+ SIS(s)/o0d.  (24.58)

Since §°(p, , 6) remains finite for all 6, its transform ®%(p, 1, v, 5) should
tend to zero as s tends to infinity. This provides the boundary condition
on the solution of (24.58).

24.5.3. The solution of the transformed equation: the homogeneous case

We now consider the solution of equation (24.58). We have already
seen in connexion with (24.7) that this solution is not needed for all
values of the parameter p, but only near the value of p where ®%(p, 7,%58)
has a pole. That is, only the position of the pole and the corresponding
residue need be determined. We shall first consider the determination
of the position of the pole. This is given by the value of p, say -3/ L%n),
for which the corresponding homogeneous equation has a solution (see
the arguments of § 24.2.2). We use L’(n) instead of L(n) in order to
distinguish the eigenvalue of the approximate equation (24.53) from
that of the exact equation {(24.47). By the solution of the homogeneous
equation we mean, of course, the solution regular at the origin, since
a solution ‘which is singular there does not satisfy the homogeneous
equation at s = 0. Since the solution of (24.58) must vanish at infinity,
80 must that of the corresponding homogeneous equation. This gives
two boundary conditions which define the eigenvalue problem,

The homogeneous form of (24.58),

Q[;’!_'.'.;.l____)(’l“"‘f’l)o(’(p, 7o 8)

1 2
- {%+§%+%(1 +]ll.) e‘*"}dw(p, mves), (24.68")

is of the same form as Schrédinger’s equation for a particle in a two-
dimensional Gaussian potential field, and the boundary conditions are
the same. No simple analytical solution of this equation is available, but
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the required eigenvalue can be obtained by means of the variational
method. It can be verified in the usual manner (§15.1) that

f ((A+1/M e UYs)—(dU ds))s ds
[

(My—1Y{1 - Ly)} _
Ml

max = »
f U*(s)s ds
]
(24.59)
where U(s) is the trial function. Wick suggests the use of the trial
function Uls) = e-tas®, (24.60)

where @ is the variable parameter. The integrals in (24.59) are then

elementary, owing to the appearance of the factor s in their integrands.
The same will be true if the more general trial function

Ule) = 3 4yeter

is used. Once the eigenvalue of (24.58') is known, we can obtain the
corresponding eigenfunction by numerical integration of that equation,
and the difference between L(n) and L%7) can then be determined to
various orders of accuracy by means of ordinary perturbation methods,
as follows. By retaining more terms in the expansions (24.49), (24.51),
and (24.52), and transforming them as before, we obtain the equation
(24.68') with a correction term, and there will also be a correction to
the eigenvalue. We represent the solution of (24.58’) with the correction
term as QO+®!-.., where ®° is the function already known. This
gives an inhomogeneous equation for ®!, which has a solution if its free
term is orthogonal to ®°. The first correction to the eigenvalue is thus
determined, and so on. In this manner we find
l M2 M4
o) = 1 T 1T @
where k,(M) is the maximum of the functional (24.59), while ky(M),
ky(M), ete., are determined by the perturbation method.
The series (24.61) is actually needed only to determine the functions
H and F defined in (24.13), and for that purpose it is more convenient
to express 7 in terms of }/L(n). Solving (24.61) for n we have

(24.61)

1= St T, (e

where n* can readily be expressed in terms of M, k;, and k,, 7** in terms
of M, ky, k;, and k;, ete. In practice, 7*, 7**, etc., would be worked out
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directly, using an obvious modification of the perturbation method
described above. As z tends to infinity, i.e. for the region with which
this method is intended to deal, the terms involving 7n**, n*** etc., are
negligibly small. These terms are therefore usually disregarded, and
only the first-order perturbation is considered.

24.5.4. The evaluation of the residue. Final results

In order to apply formula (24.12), we must also determine the residue
of §(p, 7, 8) atite pole p = —i/L(x). Since this residue gives rise only to
a slowly varying factor in N(z, v, cos §), it is sufficient to determine it in
the zero-order approximation, i.e. to determine the residue of §°(p, 7, 8).
Moreover, only the value of Ny(z,v) is usually of interest, and not the
complete angular distribution N(z, v, cos 6); consequently, we need only
the residue of [[ %, ,6) dQ, and not that of §*(», 7, 6) for all 4. In
dealing with integrals over £, we can and should approximate dQ by
6 dfd4, so that we have by (24.56)

” #(p, 7, 6) dQ = O%(p, 7,0). (24.62)

Thus only the residue of the latter quantity is needed. However, it is
more convenient to evaluate the residue of ®%(p, »,v,s) for general s. If
we oall this residue 1Y (», 8) in conformity with the notation of (24.5), it is

s¥(ne) = lLm {p+i/L(n)]0%p, 7, ve6)}. (24.63)

P~/ L(n)

The quantity in the braces in (24.63) is the solution of the equation
obtained from (24.58) by multiplying the free term by {p+i/L*(5)}. Thus
1Y (n,s) is the solution of (24.58'), i.e. of the homogeneous form of
(24.58). The eolution of the latter, however, is determined to within an
arbitrary factor, and one solution of (24.58') is already known from the
caloulations of § 24.5.3; we call it U(s), the same notation as for the trial
function in (24.59), since the ideal trial function is simply the solution of
the equation in question. Thus we have

1Y (n,8) = CU(s), (24.64)
where C is & normalization factor, and we have only to determine this

factor. To do so, we proceed as follows. We multiply (24.58) by sU(s),
subtract (24.58’) multiplied by s®°, and integrate. The quantity

f {¢°. [%+; dis] Us)—-Ufs) [g‘;-l-;l %](N}e ds

vanishes by Gauss’s theorem, since ®° and U (s) vanish at infinity, whilst
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the singularity of ®° at s = 0 is taken into account by the free term
Si3(s)/s v} in (24.58). There remains

1) f [p-+4/ L) }0(p, 1, ve8) U s)s ds = 5 f L ege .

Taking the limit a8 p - —i/L%»), and using (24.63) and (24.64), we ﬁnd
the equation for C’ while, substituting this in (24.64) and putting s =

we have Y(n,0) = SMG/e}n, (24, )

where @ = U*(0) / of U*(s)s ds (24.66)

and n—1/M is replaced by »; this is permissible to the same acouracy as
replacing the residue of ¢ by that of ¢°.

Substituting (24.61’) and (24.65) in the definitions (24.13), we obtain

H(w) = w—2(Mk, w)t—n*+4-0(1/vw)

SMG s 24.67
and Fw) = W[l+0(l/~/w)] } ( )
and hence (24.12) givest
Ny(z, v)

_ SM@ ! 13 |z Mk 2]y o\t |, a1 ®
= oo o) o2 [T e e o)
(24.88)

On examining the order of xpagnithde of the terms neglected, we see
that formula (24.68) as it stands js valid for

j2| > M log(v,/v)]. : (24.69)
If the second perturbation were taken into account in (24.61’), and the
first perturbation in the evaluation of the residue, a formula valid for
|| > [ M log(v,/v)]* would be obtained; taking account of the next order
would give a formula valid for 2 > [ M log(v,/v)}}, and so on. However,
these higher perturbations are extremely laborious to calculate, and we
shall give in Chapter XX VI a better method of bridging the gap between
the range of applicability of (24.68) and that of Bethe’s method.
In the case of hydrogen (M = 1), however, a8 Wick points out, the
second perturbation term is quite small, and in this case formula (24.68)
is applicable over a wider range of values of  than that given by (24.89).

t There are certain misprints in this formula as quoted by Marshalk (38, p. 234).
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SLOWED-DOWN NEUTRONS AT LARGE DISTANCES
FROM THE SOURCE. THE CASE OF VARIABLE
CROSS-SECTIONS

25.1. Preliminary survey

W2 shall now consider the extension of the analysis of the preceding
chapter to the case where the cross-sections depend on the velocity, In
this case, taking the Mellin transform of equations (22.2) with respect to
the velocity does not reduce the number of independent variables, since
the Mellin transform variable 7 NOW appears as an independent variable,
and not as a parameter. In general, the transformed equations will be
integral equations in 1. However, if the velocity dependence of the
cross-sections concerned is given by :

1 1 v\% 1 1 v\%
okl DI K TR S Aufg) @
where o, 4,,, and 4, .k 876 Bome constants, I(v,) is the total mean free
Path at the initial velocity, and the summation over j involves only a
finite number of terms, the integral equation in 4 reduces to a difference
equation. As in the derivation of (20.10), we can verify that, with [,(v)
and I, ,(v) given by (25.1), the equations (24.2) are replaced by

PO Daral® Mt nba 0, N+ LS 4, gm0+
E]

l(vo)
2o S
+2;(‘;51 Z Z A1~ 2,(0) 02, 9 Foy) = - 8a0r  (25.2)

where the definition of ¢, .,(1) is evident from (24.3) (since (24.3) can be

rewritten as g,(y) = g Ina0a(1)l{ls,), while the 4,(p, ) are defined by the

same formuls (24.1) as before. If the summations over j and k involve

' only a small number of terms, there is some hope of success in

attempting to solve (25.2).

. Alternatively, if we have a single non-capturing element, and the
variation of the mean free path with energy is given by

lo) = Uou) 3 By(ofon)t, (25.3)

where §; and B, are some constants, the Mellin transform equations can
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again be put into the form of difference equations; the ¢,.(p, 7) are now
replaced by :

(D, 7) = ;}];3 J. v1-1dy f A—r';((%s—?—)-eup dz, (25.4)
0 -

and the Mellin transform equations are

1pl(v,) ; B (n+1)m, (p, N+By)+nm, 1 (p,n +B8))+
+(2n+l)[1_gn(’7)]"n(p: n) = 88,4/v}. (25.5)

The equations (25.5), with 9n(n) defined by (24.3), will of course apply to
mixtures, with or without capture, provided that all the cross-sections
follow the same law. The majority of investigations have therefore
assumed that the cross-sections are given either by (25.1) or by (25.3).

Another important limitation which has always been imposed hitherto
is that the total mean free path should decrease monotonically with the
velocity, and that the value of its derivative at the initial velocity (i.e.
dl(v)/dv for v = v,) should not be zero. When these conditions are
satisfied, the form of the solution at large distances will differ markedly
from that in the case of constant cross-sections. This may be seen as
follows. As was said in §24.1, the best chance for a neutron to travel a
very large distance from the source is for it to travel the greater part of
the distance with a velocity where the total mean free path is near its
maximum value. In the present case, this means that the neutron would
travel the greater part of the distance with its initial velocity. In the
constant cross-section case there was no such restriction, and therefore
the chance of reaching very large distances for a given v and I(v,) was
much greater, and more 80 as the distances involved increased. In other
words, in the present case, Ny(», v) decreases much faster with increasing
distance than it did in the case of constant cross-sections. The number
of non-scattered neutrons decreases faster still, so that the ratio

Ny(a, v)/ Ny(, vo) (25.6)
actually inoreases with distance, but very much more slowly than in the
case of constant cross-sections. '

For any given v, and (v,), the greater di(v) /dv for v = v,, the narrower
is the range of velocities within which the neutrons have a fair chance of
reaching very large distances, and therefore the fewer neutrons penetrate
to such distances, and the slower the increase of (25.6). On the other
hand, since a neutron has to travel most of the distance with its initial
velocity, the variation of {(v) for v < v, ought to have little effect on the
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rate of variation of (25.6) with « for a given v. The same argument shows
that the rate of variation of (25.6) ought to be independent of v for large

2. At very large distances, therefore, Ny(x,v) should be of the form

N(z, v) =2 ny(2) f (v), (25.7)

- where, for a single non-capturing element, the form of no(x) depends

only on v, l(v,), di(v)/dv for v = v,, and M. If we introduce the

- dimensionless quantity

__ vy [dly)
Y= g D (268

- the form of ny(2), as a function of 2/l(v,), can depend only on y and M.

Of oourse, if there is capture or more than one element is present, the

* form of ny(x) depends on the ratios I(v,)/l,(v,) and {(v,)/l, 4(v,), and on the

. parameters ) o)
= Yo [dilo = o [dhsle)
Ye= uvo)[ dv ],.,. wnd Yok Z(v.,)[ dv ]
instead of y only.

Some analytical consequences of the approximate relation (25.7) will
be discussed in § 25.2. The actual determination of ny(x) will be outlined

. in § 25.4, although we shall take only the case of a single non-capturing

element,

The behaviour of f(v), the second factor in (25.7), near v = v, can
be assessed at the same time as n,(z) is determined. For lower values of
v, the form of f(v) depends on the actual variation of [,(v) and of Iy i(v).

. The determination of f(v) in the latter region has not yet been much

investigated. Although the approximation (25.7) becomes better as z

" increases, it becomes worse as v decreases. This follows since the smaller
- v the sooner a neutron can leave its initial energy and yet have a fair
* chance of reaching = with the velocity v. The arguments leading to
. (25.7) are therefore invalid over a greater fraction of the path, and for

fairly small v (25.7) breaks down altogether. We shall discuss the latter

* region in § 25.3 and Chapter XX VI, while in § 25.5 we shall consider some
. consequences of (25.7) for hydrogenous media.

25.2. Singularities of the Fourier-Mellin transform of the

~

density when the cross-section varies monotonically
We have said above that, if the total mean free path decreases mono-

. tonically with energy and y # 0, Ny(z,v) can be approximated in the

form (25.7) for fairly large distances and not very small velocities. Then,
if re 7 is fairly large (> o,, say), so that the high-velocity contribution
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predominates, and if im p is fairly near to 4-1/l(v,) (0, < limp| < 1/l(v,),
say), 8o that the large-distance contribution predominates, the Fourier—
Mellin transform ¢y(p, 7) of Ny(z,v) should be approximately given by

$o(Ds M 22 $o(D)F(n) [ren>ay,, o <limp| <1/Uvy)], (25.9)

where ¢,(p) is the Fourier transform of n(x), and F(x) is the Mellin trans-
form of f (v). The formula (25.9) implies that, for ren > a,, the position
of the singularities of ¢o(p, n) in the two strips ¢, < [imp| < 1/I(v,) of
the complex p-plane should be independent of . Since o,, is defined in
such a way thatt ¢4(p,n) is regular in tho strip —o, Kimp oy,
(25.9) therefore implies that, for re 7 > o,, the position of the singularities
of ¢g(p, ) in the strip

—1/l{ve) < imp < 1/l{vy) (25.10)
is independent; of 7.

As 7 tends to infinity, ¢o(p, n) clearly tends to the Fourier transform
M(p,v,) (say) of Ny(x,v,), i.e. of the density of neutrons which have not
undergone any collisions. The function My(p,v,) is regular in the
complex p-plane cut along the imaginary axis from —ico to —1/l(v,) and
from /l(v,) to 100, and in particular it is regular in the strip (25.10). Thus,
for ren > a,, ¢(p,7) should be regular in that strip, and the same is
true of all other ¢,(»,n) and of all =,(p, 3).

Thisconclusion could havebeenreached by purely mathematical means,
without using the physical considerations leading to (25.7). For the sake
of simplicity, we shall give the alternative proof only for a single example,
namely a single element with no capture, assuming that (25.3) holds and
that the summation over j in (25.3) contains only two terms: j = 0,

B, = 0andj = 1, 8, = B > 0. Inthis case we have to deal with m,(p, ),
and the equations (25.5) become

ipl(”o)Bo[(n"l" D) p a2y )+ (D, ’7)] +(2n+ l)[l —gn(ﬂ)]"n(p’ 1)

= 88,,0/v3—1pl(ve) By[(n+1)my (. 9+ B)+mmy (P, n+B)],  (25.11)
with By+B, = 1, B, 2> 0 (since [(v) is non-negative) and B, > 0 (from

the agsumption that dl(v)/dv > 0). The above conditions imply that
0< B, <1. (25.12)

The equations (25.11) may be regarded as a system of equations to
determine the =, (p,n) when =, (p, n-+B) is known. They then represent
t If -0, < im p < 0y, the contribution from large distances is not dominant, while

that from smaller distances cannot cause a divergence of the integral (24.1) defining
$olPs 1), if T0 9 > Oy
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& difference equation in only one variable, namely ». It is well known
-that such equations can always be solved, provided that the corre-
‘sponding homogeneous system
| U B+ 1) s, 2+ 07y (0, - @1 D1 =g, ()5, 7) = 0
: (25.13)
"has no solution. Thus, for a given 7, the singularities of ., (p, 1) a8 a
function of p can arise only in one of two waiys: either p is an eigenvalue
-of (25.13), or m,(p,n+B) has a singularity for the given p. If the first
‘of these holds, since the equations (25.13) are identical with the homo-
‘geneous form of (24.2) in & medium where the total mean free path is
: Bol(v,), the eigenvalues tend to +4/B,l(v,) 88 ren > 0. By (26.12),
these lie some distance outside the strip (256.10), and thorefore, for
‘rey > some 9y» (26.13) has no eigenvalues in the strip (25.10). Therefore,
l.f 7(P, 1), for some 7 such that res > o,, has a singularity at some
.point p = p,, say, in the strip (25.10), then . (p, n+B), 7P, 7+28),

etc., would have gingularities there, and this is impossible in view of the
behaviour of m,(p, n) as re 5 - co.

The extension of this proof to more complex situations is evident.

If B, in (25.13) is zero, » does not appear in this equation. Instead of
the eigenvalues p for a given 7, we then have the eigenvalues », which
‘are independent of p. In this case, a refinement of the above arguments
.s6ems to show that, for 7 sufficiently large (re > o,), the =,(p, ) are
regular functions of p, not only in the strip (25.10), but throughout
the complex plane cut along the imaginary axis from p = —io0 to
P = —i[l(v,) and from p = i/l(v;) to p = ico.

25.3. The method of Verde and Wick

25.3.1. The singularities

The above conclusion has been used by Verde and Wick (50) in the
proocedure they suggested for determining Ny(», v) for small » when

lim (v) = 0. (25.14)
o~0

It will be assumed, of course, that either (26.1) holds or all the cross-
sections follow the same law and (25.3) holds. In the latter case (25.14)
implies that all the By are positive. If the various cross-sections follow
different laws, so that (25.1) is used, we shall assume that the ratio of the
capture and scattering cross-sections remains finite. If (25.1) is used,
(25.14) implies that at least one oy i8 negative, while the assumption
that the capture-scattering ratio remains finite means that, if «, is the
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largest (in modulus) negative «,, 4,10 # 0. The procedure is very
4 Wk,

similar, whether we assume (25.1) and start from (25.2), or assume (25.3)
and start from (25.5). For definiteness, we shall take the latter case, and
suppose [(v) proportional to v, so that the sum in (25.3) reduces to a single
term with 8 = 1. The equations (25.5) then become

(@n4-1)[1—g,(n)}ma(2, 7)

S ,
= ;)'5 8»0-‘1’1(”0)[(”‘*' 1)77n+1(pr 7)+ 1)+Mn—l(p’ 7)+1)]’ (25'15)
0 .
and the corresponding equations (25.13) are simply

(2n+1)[1_gn('7)]ﬁn(p’ 7) = 0. (25.18)
Let us examine the solution of (25.15) for a partioular p in the out plane,
According to the conclusions of §25.2, especially the remark at the end
of that section, for re» > some Oy 7a(P, 1) should be regular. As re
decreases to values < o, the first singularity encountered olearly occurs
when 7 is an eigenvalue of (26.13), i.e. (25.16) in our case; 800 §25.2. The
eigenvalues of (26.18), however, are given simply by the roots of one of

the equations " 1—ga(n) = 0. (25.17)

As re n decreases further, other singularities may arise in two ways:
either from further roots of (25.17) or if m, ,(p, n+1) is itself singular.
All these singularities are poles, though they need not be simple ones;
multiple poles may arise either from the multiple roots, if any, of (25.17),
or if (25.17) has a root at 5 = 4, say, whilst «, . (p,7) has a pole at
n=7n'+L

The position of these poles is independent of p. This is not only a
feature of the particular example we have chosen, but is found whenever
(26.14) holds. For, if all the B are positive, the equation (25.13) always
has the form (25.18), whilst if we start from (26.2), at least one of the

o, i8 negative, and the homogeneous equation corresponding to (25.13)
5 g q
is thent
2n+1
Ty et 3 Auall =m0V Balp, 1-H30) = 0,
U(v,)

where «, is the largest (in modulus) negative oy, and these equations again
do not involve p.

The following remark may be made concerning the distribution of these
poles of the m,(p, ). Each g, (n) is a rational algebraic function of # (see

t The unknown functions in this equation are denoted by §,, and not by #,, ginoce, if
we assume (25.1) instead of (25.3), we must use (24.1) instead of (25.4).
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© (24.3)), so that each equation (25.17) can have only a finite number of
- roots. None of the roots of (25.17) for any = lies to the right of re = o,
_ (this can be proved directly by using (24.3) and evaluating o, explicitly).
If, for some 7, (25.17) has a root n = %', say, the resulting poles of
me(p, n) lie at y» = o'—|n—n’'|, ' —|[n—n'|—2, ete. Forany particular
n and o’, say, the number of poles of =, (p, 1) to the right of re » = 0,—0’
is therefore finite.
If 5,, is the sth pole of m,(p,n) in order of decreasing res, i.e.
Ten,, < ren,,., and m,, is the multiplicity of this pole, then an
expansion of m,(p,7) in partial fractions gives

“’n.a.q(p) U
(P, 1) = Z«ZJ" 2t (D, 1), (25.18)

, provided that the sum over s converges, where w,, , , are some functions
. of p alone, regular in the cut p-plane, and the U,(p, n) are regular for all
" n and any » in the cut plane. It is difficult to obtain any information
" regarding the functions U,(p,%) in (25.18), but it has been conjectured
. that they are zero. The solution of (25.15) should be unique, according

to the general properties of slowing-down problems (see Chapter X VIII),
. Consequently, the conjecture is proved if a solution satisfying all the
: oonditions on the =,(»,%) can be obtained with the U, (p, n) omitted.
: Instead of (25.18), we shall therefore assume henceforth simply

= NN w,(0) ,
m0(D, 1) = Z; aln (25.18")

25.3.2. The evaluation of the coefficients

We thus have to determine only the functions w,,,(p). Applying the
" inverse Mellin transformation to (25.18'), we have

e logq—l(”o/”)
5 f N, (x, 0)e%® dz = Z( _1 ) cnalp), (25.19)

" and this shows that, for any n and sufficiently small v, only the first few
- terms in (25.19) will give a non-negligible contribution. To determine
Ny(=, v), for example, for small v, we need only know the w,,4(p) for the

" first few values of s.

- The equations to determinet w, ,(p), assuming 7,, , to be a simple pole,
. are obtained by substituting (25.18’) into (25.15) and taking the limit

t The third subscript is omitted when m, , = 1, i.s. when the pole is simple.
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a8 71 -> 7,,. This gives

—iplo)[(1+1) 3 "B wrrs )0 3 S wnosale)). (2520

The modifications necessary in (25.20) when 7,,, is & multiple pole are
evident.

It seems hopeless to attempt to solve the system (25.20) directly for
arbitrary p. However, the coefficients of w,,; ,4(p) and Wy vq(P)On
the right side of (25.20) are proportional to ». Thus, for small p, the
equations (25.20) can be solved by expanding in powers of p. Since the
Wy44(P) are regular in the cut p-plane, this series will converge for
Ip| < 1/lvy). This is not yet sufficient for our purposes, but a slight
modification of the procedure gives an expansion valid throughout the
cut plane. Thus, let ¢(p) be the function which maps the region of
regularity of w,,,(p) conformally on the circle |¢|] < 1, such that
€(0) = 0; then, expanding the above series for w, ,,(p) in powers of ¢,
we obtain a series which converges for all ¢ in this cirole, and putting
€ = ¢(p) we obtain an expression for w,,,(p) valid throughout the

region where these functions are regular. This region being as stated,
the function e(p) is

«(p) = 2l(v,)
[{plvo) P+ 141’ (25.21)
and thus pl(vy) = 2¢/(1—e?).

In practice, of course, we should not expand w,,,,(p) first in powers
of p and then in those of ¢, but substitute pl(v,) from the second of
(25.21) in (25.20), expand w,,,(p) directly in powers of ¢, and then
substitute for ¢ from the first of (25.21). In evaluating the coefficients
in these expansions, it is often convenient to redefine the functions
wy,,,(p) slightly by including in them certain frequently occurring
numerical factors. The details of such caleulations may be found in
Verde and Wick’s paper (50).

25.3.3. The inversion of the Fourier transforms

When w,, ,(p) has been determined, we have still to invert the Fourier
transform, i.e. to evaluate the integral

1
3= | e naa®) . (25.22)
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. which gives the coefficients of

in the final expression for N,(z, v). Neither the method of residues nor
that of steepest descent is applicable here, and some numerical procedure
is necessary. If |z|is not very large, numerical integration along the real
", p-axis is practicable. If |z] is very large, the path of integration has to
. bedeformed, and inso doing we have to compromise between two require-
ments. In order to avoid subtracting nearly equal quantities, the path
should closely follow the two sides of the cut, as in the evaluation of
© pee(r)in (5.23) (Fig. 3); but, in order to minimize the error due to terminat-
ing the expansion of w,, () after a finite number of terms, the path
should lie as far as possible in the region of small |¢|. If E(le]) is an
upper bound of the modulus of the remainder term in the expansion of
@, 4 4(P) in powers of ¢, the ideal path would be that which minimizes the .

integral lpl-n.N?>°e4impE( _P_l('_’o)__D ldpl.
[pHoa+1T+1

Ipl=c0, re p<0

Here we can estimate Z(|¢|) by means of the coefficients that have been
evaluated, noticing that w, , () should not have singularities of very
high order on the cut, and therefore should not increase rapidly.

Verde and Wick themselves adopted a different method of evaluating
the integral (25.22) for large [x|. In the particular example they con-
sidered, it was observed that, if the expansion is

‘”o.o(P) = ; wj'”

all the w; that had been evaluated numerically could be represented in
the form

Wy = Wyo+Wyy, (25.23)
where the w,, were the corresponding coefficients in the expansion of a
comparatively simple algebraic function, namely
C(1+e%p,
for a certain C and g, while the ratio |w;,/w,,| decreased rapidly and was
soon very small compared with unity. Verde and Wick conjectured that
the relation (26.23), with the above wy, and w;,, holds for all j, and

therefore PUt ww(p) = woo,o(P)'i'woo,l(P)'

It can then be easily shown that, as || —> co, the contribution of wg,(p)
to (25.22) becomes negligibly small in comparison with that of wgy(p),
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the latter as |x| - oo is given by

Clz|4(v,) ) e-twineon, (25.24)
which is of essentially the same form as the expression for ny(z) in (25.7)
(see (25.44) below). However, Verde and Wick do not state whether the
value of ¢’ in (25.24) is the same as that of —1—g,/y in (25.44).

It is to be hoped that a representation of the type (25.23) for the
coefficients in the expansion of w, 4o I powers of e will exist in all
applications of Verde and Wick’s method. It is not known, however,
whether this is actually so. Ifnot, one can always use deformation of the
contour and numerical integration, as described earlier in this seotion,

We have seon that all the equations (25.18) oan be satisfled on the
assumption of (25.18'), If (25.18') converges, it therefore gives the
required solution, and this proves the conjecture that all the Up, %) in
(26.18) vanish. However, it has not yet been possible to prove the con-
vergence of (25.18’).

The method of Verde and Wick is limited, as we have seen, to the
case where [(0) = 0. If the mean free path tends to a non-zero limit as v
tends to zero, another closely related method, due to Holte, is available.
Before disoussing this, however, we should investigate the behaviour of

the solution for v fairly close to v,, and in particular determine ny(z) in
(25.7). .

and the latter can be found analytically. The asymptotio behaviour of

25.4. Wick’s asymptotic solution

25.4.1. The reduction of the equations

The determination of n,(x) in (25.7), which is more troublesome, has
also been carried out by Wick (54). As with the derivation of (25.7), the
following analysis applies only to the case where the cross-sections
decrease monotonically with increasing velocity. For simplicity we take
the case of a single non-capturing element. The procedure is very
similar to that of § 24.5. Taking the Fourier-Mellin transform of (22.1)
and putting, similarly to (24.21) and (24.46),

{ [ N(z,v,c080
#(p,7,6) = vl-z J' -1 dy f .ﬁ;(’v;i)g‘m dz, (25.25)
we obtain ° -
(P, 1, 0)_ip cosd ‘;(P, 7 6) = ff 9o, 77 (p, 7,8') dQ'+S/4m:3,
(25.26)

where ¢(p, 1,6), O, and ¢(@, 7) have the same significance as in § 24.5.
3505.90 pd
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The next step is to find the relation between # and §. In deriving (25.7)
we have remarked that ny(x) depends only on }x,) and [v/l(v)][di(v)/dv]
for v = v,, and not on the actual form of I(v) for v < v,. We can therefore
expand [(v) in powers of v,—w, or in powers of the lethargy, the latter
being more convenient, and terminate the expansion at the second term.
In other words, with the notation of (25.8), we may put

l(v) = Uvy)[ 14y log(v/v,)]. (25.27)
With this /(v), & comparison of (25.25) with (24.21) and (24.46) gives at
once 2
#p,7,6) = U 14+7 (2,7, 0),

and equation (26.26) then becomes
[1—spl(vo)oos 6—1ipl(v,}y cos 8 2/on}(p, 1, 6)
= [{ 9@, 2)(p, 7,87 4+ 8/4m3. (25.28)

The only important difference between (24.47) and (25.28) is the appear-
ance in the latter of the extra term

—$pl(vy)y cos 0 2770, (25.29)
but this changes the analytical nature of the solution.

Let us first consider what are the ranges of p and 7 for which the
solution of (25.28) is relevant. For large |z|, as is easily shown, the main
contribution to N{(z,v, cos §), as given by the inverse Fourier transform
of (25.25), comes from values of p in the vicinity of 4-i/l(v,), i.e. the
gituation is much the same as in the case of constant cross-sections.t
For 7, however, the position is rather different. The formula (25.9)
implies that the range of values of 5 which, for a given v, give the main
contribution to the inverse of the Mellin transform in (25.26) is indepen-
dent of z. Thus, instead of determining the asymptotic behaviour of the
solution of (25.28) as 5 — o, as in the constant cross-section case, we
have to find this solution for some fixed . However, if we wish to
determine only ny(x) in (25.7), it does not matter what value of  is chosen,
and it is convenient to take the case of large . In fact, this is necessary
because of the approximation (25.27). Once 7 has been assumed large

t If = is large and positive, for instance, we should use, in evaluating the inverse
transform of (25.26), & contour in the p-plane along which im p is negative and as
large as possible. Since # is regular in the strip (25.10) (see § 25.2), we therefore take a
contour with im p o2 ~—1/l(v,). If (25.25) converges, ite values for » purcly imaginary
should be much greater than those for complex p with the same imaginary part and a
non-negligible real part; the difference is particularly marked if |z| is large. This
confirms that the main contribution to N(z, v, cos 8) for large || is from the vicinity
of p = —ifl(v,) if 2 is positive, or of p = i[l(v,) if x is negative.
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and p =~ —ifl(v,), we can introduce the same approximations in (25.28)
as in (24.47). With the same accuracy, and noticing that (25.29) is the
only term in (25.28) which involves y3/27, we see that in this term also
we can approximate cos§ by unity. This gives, similarly to (24.53),

[1—ipl(vg)}7%(p, 1, 8) = —(363—0/09)7(p, 1, 0)+

() [ [ ervmo-onen st coustninp, o oyraag +

+S/4mv}, (25.30)
where #%p,7,0) is the first approximation to #(p,n,6). Taking the
Bessel transform of (25.30), we obtain, similarly to (24.55),

[1—ipl(ve) ]I, 3, v)
{l (avz_*_ : av) +y + §(U%l[_;:'_l)_)e--)ll-yllﬁ(llzl-r)--1)} 1%(p, 9, v) +‘§8_(;') ,

(25.31)
where the deﬁmtlon of I1%p, ,v) is evident by analogy with (24.54).

25.4.2. An etgenvalue problem

By means of the substitution (24.57), it was possible to put the
equation (24.55) into a more convenient form. The same change of
variables in (25.31) renders the homogeneous form of the latter equation
separable. We denote the function II%(p, 5, v) as a function of p, 7, and
8 by a new symbol V(p, 7,8), so that

I°(p, n,v) = V[p,n, MV{2/(M77_ 1)}*]- (25.32)
Then

F:] ] Ms
%H"(p, n,v) = {3_17 S(7—T) % }V(p, n,8) for & = My[2/(Mn—1)}t,

and the equation (25.31) becomes

M l’;{: 1){[1_ipl(vo)]—75ai}1’(p, 7, 8)

= 2e_r —4s*
=\ tsn o 6a+2(l+M) e }V(p
The solution of the corresponding homogeneous equatlon is given by

superposition of expressions of the form &(x, g)w(s, g), where & and w are
the solutions of the equations

(K+g)i(n,g) =0 (25.34 a)
and (A+g)w(s,g) = 0, (25.34 b)

SS(a) )

(25.33)
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K and A being the operators on V(p,7,) on the left and right sides
respectively of (26.33), and g being an adjustable parameter. N
It can readily be seen, as in the case of equation (24.58'), that the
required solutions of (25.34 b) vanish for 8 = oo and are regular for s = 0,
80 that (25.34b) leads to an eigenvalue problem. This immediately
suggests the solution of (25.33) by an expansion in terms of the eigen-
functions of (25.34b). Before doing this, however, we shall examine
equation (25.34 b) more closely. To bring it into & more familiar form,

we put w(s,g) = er*AMy(s g). (25.35)
The equation for (s, g) is then

a2 1d 1 1\ y28? y
e s —| et _ Y2 = — -
A ) st L) lo-+ )00
(25.36)
and this may be regarded as the Schradinger equation for a particle in a

two-dimensional potential field which, at large distances, tends to that
for & harmonic oscillator. This equation has the following properties:

(1) The e{genvalues g form a discrete set. This can be proved in the
same way as the theorem that the eigenvalues for a harmonic oscillator
form a discrete set,

(2) The eigenfunctions of (25.36) corresponding to different eigen-
values are orthogonal with weight factor s, as may easily be verified.
The corresponding eigenfunctions of (25.34b), if suitably normalized,
therefore satisfy the orthogonality condition

f W(3, g pu)w(8, Gy )e 7 MM s ds = 5, ., (25.37)
H

where g, is the mth eigenvalue of (25.36).

(3) There is a good deal of evidence that the eigenfunctions of any
equation of Schrédinger type form a complete set. This may therefore
be assumed regarding (25.36), and hence also for (25.34b).

We shall see shortly that, for our present purpose, only the lowest
eigenvalue is of interest. This can be determined by means of the
variational method, as in §24.5.3.

25.4.3. Final results
From the above remarks concerning equations (25.34 b) and (25.36),

we can put V(p,,8) = 3, (e, g, 1, 0. (25.38)
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Substituting this into (26.33), multiplying by
‘W(J, gm)edy../m 8,

integrating over all s, and using (25.37), we obtain

{ 2= 13700~y |+ afato,.00) = 50,0
(25.39)
From its definition, IT%(p, 7,v), should remain finite as 5 - + oo for
any given p 7 — ifl(vo) and any given v 3 0, This implies that the re-

quired solution of (25.39) should also remain finite as 71—+ oo, This
solution is therefore

ofp 1+ 4p00) = S 0,02 [ 2 () el LBl )
? (25.40)

As has been said previously (see the disoussion preceding formula
(26.30)), in order to determine n.(x) for large x we have to examine the
asymptotic behaviour of the solution of the transformed equation as
P > —il(v,), whilst 5 must be kept fixed, though it may be taken as
large as we please. Let us consider the asymptotic behaviour of (25.40)
88 p — — i/l(v,), bearing in mind that y is ussumed positive (seo (25.8)).
Then, if g, is positive, the integral in (25. 40) converges for all
imp > —1/l(v,), and as p - —i[l(v,) it reduces to

f ‘1’1_”'.'(..) , (25.41)

If, however, g,, <0, (26.41) diverges and (25.40) ltends to infinity as
P > —ifl(v,). To estimate its asymptotic behaviour in this case, we put
z = [1—ipllve)lnfy, 2 = [1—ipllv)ln'lv,

and notice that, if p tends to this limit while 7 is fixed, 2 tends to zero.
If g,, is negative, the integral in (25.40) becomes

20nlYes f e¥2' 10w dz’ rs 20wy f €210 2’ = YT (—g,[y),
(25.42)

ie. [1—ipl(we) o . (/Y)Y — ). (25.42')
The modification needed if g, is zero is evident.



408 LARGE DISTANCES FROM THE SOURCE XXV, §4

Substituting (25.42’) in (25.40) and combining it with (25.38) and

(25.32), we see that for g, < 0 the corresponding term in I1°(p, 5,v)
behaves as

[1—4pl(v,) = x & function of 5 and v only

when p > i[l(v,), so that g,, makes a more important contribution, the
larger its modulus (g, < 0). A closer examination of the equation
(25.36) which defines the eigenvalues g,, shows that the lowest eigenvalue,
which we call g,, is always negative. The leading term in I1°(p, ,v) thus
behaves, as p tends to the above limit, like

[1—pl(ve)}7#” x & function of » and v only. (25.43)

Inverting all the transforms involved, bearing in mind that the difference
between #(p, 7, 8) and #°(p, 7, 6) is negligible for large », and noting that
the inverse Fourier transform of the factor given explicitly in (25.43) is
proportional to x-0¥)-1¢~zfvd, we obtain

~1-(guy)
e~i=lo) £ (3 0)-+smaller terms,

(25.44)
where g,/y is negative, as has been said before. This fact could have been
foreseen from our discussion of (25.6), since Ny(z, v,) is proportional to
E\[||/1(vo)] (see the derivation of equation (6.1)), while the latter function

behaves as U lnl)e=e0
for (x| » I(v,).

The formula (25.44) is, of course, of exactly the same form as (25.7),
and thus gives the expression for n,(x). An examination of the derivation
of (25.44) gives a clearer idea of the range of validity of (25.7). In
particular, the approximation introduced in the derivation of (25.42)
shows that, if v is very close to v, (25.44) becomes valid only at very
large distances. Values of v which are close to v, are, however, seldom of
interest in practice.

The behaviour of the other factor in (25.44), i.e. f(v,0), as v v,
can easily be expressed in terms of the eigenfunction (s, g,) of (25.36)
which belongs to the eigenvalue g,. To determine it for smaller », how-
ever, more terms should be taken in the expansion (25.27) and the
perturbation method applied. This has not yet been done. If v differs
appreciably from v,, and in particular for the lower end of the spectrum,
the present method is no longer suitable, and another must be sought.

One such has already been outlined in § 25.3. Further alternatives will
be discussed in Chapter XXVI.

N(x,v,c080) = (zl(—:(-i-))
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25.5. Hydrogenous media: the method of Spencer and Fano

25.5.1. Introduction

The existence of the approximate relation (25.7), which was con-
jectured in § 25.1 and confirmed by the analysis of § 25.4, is of interest in
another respect also. We have seen in § 23.6 that age theory, besides
breaking down at very large distances, is nowhere valid in hydrogen and
media containing a high proportion of hydrogen. In the same section,
a brief survey was given of the chief methods used to determine the
neutron distribution at moderate distances from the source in hydro-
genous modia. It was also remarked that the brenkdown of age theory for
hydrogen is connected with the fact that, even at moderate distances,
the neutron distribution has features normally belonging to the asymp-
totic distribution at very large distances. This suggests that the relation
(25.7) should be valid for hydrogen at considerably smaller distances from
the source than for heavy nuclei. If this ocours before the neutron
population has decreased too greatly, a method of determining the
neutron distribution in hydrogenous media would exist which is in
some respects more satisfactory than those of Chapter XXITI, We shall
now describe this method, leaving to the next chapter the last remaining
method of dealing with neutrons at large distances.

It should be remarked at once that the method discussed here, which
is due to Spencer and Fano (44), was originally designed for X-rays
rather than for neutrons. The problem of the penetration of X-rays is
in many respects very similar to that of neutron transport, but the
problems differ appreciably in some ways. The application of Spencer
and Fano’s method has been successful in the case of X-rays, but it is
not yet known how useful it will be for neutrons.

The general assumptions given in § 1.1 are as applicable to X-rays as
they are to neutrons, and the Boltzmann equation therefore has much
the same form (2.4’) as in the case of neutrons; the energy, of course,
can no longer be expressed in terms of the velocity, but is expressed in
terms of the wavelength of the corresponding photons, whose velocity
is that of light. The laws governing the results of individual collisions,
and therefore the form of f(A', 2’ — A, Q) in (2.4'), on the other hand,
are markedly different from those found in the case of neutrons. Forward
scattering is strongly predominant, and the energy degradation is very
appreciable, except in small-angle scattering; the absorption increases
rapidly with decreasing energy. Hence, for a given energy and position,
the X-rays moving directly away from the source strongly predominate,
and the distribution of X-rays at any distance from the source should
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. have the same character as the neutron distribution at very large dis-
~ tancee from the source. We should thus expect an approximate relation
" similar to (25.7) to become valid for X-rays even at fairly moderate
. distances from the source.

. On the other hand, we have remarked that it is the possibility of
applying (25.7) before the number of particles has been too much reduced
: that is made use of in Spencer and Fano’s method. This shows that the
" 8sucoess of the method for X-rays does not imply that it will be equally
. sucoessful for neutrons. The scattering law and the expected form of the
. solution, however, differ in the X-ray case from those in the neutron
' case in the same direction, although more so, as do the scattering law
. and the expected form of the solution for hydrogen from those for heavy
- nuclei. Thus, even if Spencer and Fano's method in its present form is
" unsuitable for neutrons in non-hydrogenous media, it may still be suit-
. able for neutrons in hydrogenous media.

25.5.2. Spatial moments and orthogonal polynomials in spatial co-
ordinates ,
"~ We shall start by returning to the spatial moments of the neutron
distribution. The equations governing these moments have been
~ derived in § 22.3, and the moments can be determined by numerical
. integration of these equations, even when no analytical solution is
available. Onoe the spatial moments are known, it is always possible
* to reconstruct the complete spatial distribution. In practice this would
. be done as follows. Suppose that we have selected some function w(z),
' everywhere positive, such that, as || -> oo, it tends to zero faster than
* any power of z, and have introduced two sets of polynomials p,(x) and
p}(z), related by

L4

f w(z)p,(2)p}(z) dz = §,,. (25.45)

- It may be assumed without loss of generality that p,(z) is constant and
. equal to unity.

Further, let the products Pi(x)w(x) form a complete set of functions
" which tend to zero as |2] = 0, We can then expand the neutron density
. Ny(z,v) in terms of these functions, obtaining

By(z,9) = 3 a,(o)pi(aola); (25.46)
multiplying this by p} (), integrating over z, and using (25.45), we obtain

By ov) = fNo(x, v)p}(z) dz. (25.47)
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That is, each a, (v) is given by alinear combination of thespatialmoments
of the neutron distribution. In Partioular, for an isotropic plane source,

~ the polynomial p}(x) being of order not greater than 2s, the expression
for a,4(v) is

@4 0(V) e Po.nmu,o(”)+.’l’1.¢mu—:,o(”)+---+Pc.nmo,o(”)s (25.48)

where the p,, are some constants, namely the coefficients of the even
powers of z in the p!(x), and the Myyo(v) have the same meaning as in
§22.3.2, .

Two facts should be noted regarding the expression (25.48). Firstly, if
w(x) happens to coincide with the exact Ny(z, v) for a particular v = vy,
say, then, since p,(v) = 1, a comparison of (26.45) and (25.47) shows at
once that a,(v,) = 8,y Similarly, if w(z), though not eqpal to N(z, %),
is a good approximation to it, the @4,0(v,) for 8 £ 0 will be small. Again,
if w(z) is a good approximation to Nz, v,) and w(z)p,(z) is & good
approximation to Ny(z,v,)p,(x), then @,0(v,) for 8 > 2 will be' much
smaller than a, 4(v,), and so on. This suggests that, the more closely
w(x) resembles Ny(z, v,), the more rapidly will the series (25.46) converge
forv = v,. In the same way, we can readily see that, if N;(z, v)is approxi-
mately given by ‘

Ny(=,9) e no(a) f(v), (25.49)

and w(z) is a good approximation to no(z), then all the a,o(v) fors £ 0
will be small; the closer w(z) f(v) approximates N,(z, v), the more rapid
will be the convergence of the series (25.48) for any v for which (25.49)
is valid.

It should be borne in mind, of course, that the convergence of (25.46)
is of little use if the m,, 4(v) are first found by numerical integration and
then substituted in (25.48). After a certain &', the my, (v) increase with
&’. The smallness of the a,4(v) therefore means simply that a,,(v) is
calculated as the difference between two nearly equal large quantities,
and therefore the difficulty of evaluating @,,0(v) balances the gain due to
the rapid convergence of (25.48). This shows that the rapid convergence
of (25.486) is not of much use unless the a,,0(v) can be caloulated directly,
without finding the m,,. ofv) first.

Here, however, we come to the second feature of the expresasion (25.48).
We have seen in §22.3 that the successive moments mg,o(v) satisfy
equations which all have the same kernel and differ only in their free
terms. This can be seen by comparing (22.46 a) and (22.10); the equa-
tions for the higher spatial moments were not written explicitly in § 22.3,
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but it can be seen from the description of their construction that they are
of the form stated. Thus, if all the p, , are constant, a,o(v) will satisfy
an equation having the same kernel, and differing from the equations
for the my, 4(v) only in the free term. Consequently, it can in fact be
determined directly without using the m,, 4(v). The free term of the
equation for a,4(v) will, of course, be a linear combination of the free
terms of the equations for m,,4(v), My, 3 4(v),..., Me,(v), and will therefore,
by§ 22.3.4, contain a linear combination of May_12(V), Mag_g1(V),.0cy My 41 (0),
with oonstant coefficients. The various Mgy 411(v) themselves satisfy
equations with the same kernel and different free terms. This linear com-
bination of m,, ,,(v), m,,_5,(v), etc., can thus be again determined
directly, without using the m,, ., ,(v) themselves, and so on.

Thus we see that, if the various p, 10 (25.48) are constant, i.e. if w(x)
in (26.45), eto., depends on z only and is independent of v, the difficulty
involved in caloulating the a(v) from the m(v) can be avoided, and we
can utilize the most rapid attainable convergence of (25.46).

This completes our account of the basic ideas underlying Spencer and
Fano’s method. It also explains the importance of the condition that
(25.7) should hold for a significant range of values of z. For, unless this
is 80, it would not be possible to find a w(x) independent of v that would
make (25.48) converge rapidly. If, on the other hand, w(x) depends on
v, it would not in general be possible to determine the a,o(v) directly
without using the m,, ().}

25.5.3. The choice of the weight function

‘We shall now discuss the details of Spencer and Fano’s method. These
depend to some extent on the kind of source involved, whether a plane
or a point, and isotropic or collimated. For simplicity, we shall take only

the case of & plane isotropic source. The extension to other types of
source will be evident.

The first topic is the choice of w(z). For pure hydrogen, according to
(25.44), ng(2) in (25.7) is given by ny(x) ~ |2|-1-@s¥e-I2ikv0), where g,
can be caloulated as explained in § 25.4. The calculation is extremely
lengthy, however, and the factor |x|~1-@ varies comparatively slowly,

t The above arguments refer, of course, only to the case where Ny(=, v) is to be deter-
mined for all v in a certain range. If we are interested in Ny(z, v) for a certain value of
v (vy, say) only, the restriction that (26.7) must be a fairly good approximation can be

removed. For, since the determination of @,,o(v;) requires a knowledge of a,. ,(v) only

for &’ < s, the accuracy with which @, 0(v;) can be determined is independent of the
rate of convergence of (25.46) for v % v,. It therefore does not matter whether the
behaviour of w(z) is similar to that of Ny(z, v) for v 3 v,. However, there has as yeot been
no investigation which has made use of this fact.
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80 that the convergence of (25.46) cannot be much affected by disregard-
ing this factor. We therefore put simply

w(x) = e~ (25.50)
with « = 1/l(v,). ' (25.51)
If we have not pure hydrogen but a hydrogenous mixture, the arguments
leading to the choice of w(x) are somewhat different. Since a mixture
of hydrogen and deuterium is unlikely to be of practical interest, we shall
consider only mixtures of hydrogen and heavy nuclei. In this case, we
can provisionally neglect the slowing down due to collisions with the
heavy nuclei up to moderate distances from the source, and regard
collisions with hydrogen as the only cause of slowing down, asin Chapter
XX. In this approximation, the distribution of neutrons of the initial
energy is given by the solution of a fictitious one-velocity problem in
which all hydrogen collisions are regarded as captures and the other
nuclei are considered to be infinitely heavy. If L*(v,) is the diffusion
length (see § 5.2) in this fictitious problem, the solution of that problem at
a distance of more than a few times l(v,) from the source is a constant
times e~l@iL"w), If l(v) decreases with v, it is easily seen, as in §25.1,
that for any v and the distances concerned Ny(z,v) is approximately

given by Ny(z,v) o e-1#UL 0If (1), (25.52)

which is similar in form to (25.7). The approximation (25.52) breaks
down at distances where the effects of slowing down by collisions with
the heavy nuclei become important, i.e. at distances comparable with
L¥, the slowing-down length for a fictitious medium obtained from the
actual medium by replacing all hydrogen collisions by captures. If there
is an appreciable admixture of hydrogen (and this is the only case where
Spencer and Fano’s method would be used, since otherwise age theory
is applicable), L} is very large, so that the neutron population at these
distances will be very small, and the breakdown of (25.62) cannot
noticeably affect the convergence of (25.46). We therefore continue to
take w(x) in the form (25.50), but instead of (25.51) we use
o = 1/L*(v,). (25.53)
The arguments leading to the choice (25.50) and (25.51) or (25.53)
are somewhat crude. This, however, is of little importance, since the
final solution for Ny(x,v) cannot depend on the choice of w(z), which
affects only the rate of convergence. Moreover, we can be reasonably
confident that the deviation of the w(x) chosen above from the ideal
w(z) can have only a slight effect on the rate of convergence of (25.46).
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25.5.4. The polynomials U,(y) and V,(y)
. We now consider the determination of the polynomials p,(x) and p} (a;) :
introduced in (25.45), for w(z) given by (26.50), and the corresponding
~ polynomials that would appear in expansions similar to (25.46) for the
- higher spherical harmonic moments N,(z,v). To start with, we shall
. discuss the p,(x) and p}(x) apearing in the expansion of Ny(z,v). Hitherto
we have spoken of both these as polynomials, but we have used only the
fact that the p}(z) are polynomials; the P,(x) might be any simple
- funotions, provided that the w(z)p,(z) form a complete set and (25.45) is
. satisfied. In particular, the p,(z) might be polynomials in |z| instead of z;
the p}(x), however, must be polynomials in «, since otherwise we should
" have integrals of the form

[ 121218z, 0) de,

and these do not satisfy the same recurrence relations as were used for
the my, o(v).

Since both Ny(z, v) and w(x) are even functions of z, p,(x) should be so
also. Thus either p,(z) should include only even powers of z, i.e. be a
polynomial in 23, or it should be a polynomial in ||, as mentioned in the
last paragraph. The polynomials p}(z) should also be even functions of
. %, though for a somewhat different reason. If p}(x) contained odd powers
. of z, these would give no contribution to either (26.45) or (25.47). Only
. terms containing even powers of z are therefore relevant. In other words
P}(2) may be regarded as a polynomial in z*. Finally, in order that
(25.45) should determine the polynomials in question completely, the
same number of coefficients should be involved in p,(z) and p}(z) for a
" given s. We thus have two alternatives:

(a) Both p,(x) and p}(x) are polynomials of order s in 22,

(b) While p}(z) is such a polynomial, p,(z) is a polynomial of order s
in |2|.

1t is found that the latter alternative has a number of advantages. In
particular, polynomials are obtained whose coefficients are constructed
" according to a much simpler law, and this greatly simplifies the subse-
quent algebraio manipulation. With alternative (b), it is evident that
the functions p,(2)w(z) form a complete set of even functions tending to
zero a8 |z| tends to infinity. We shall therefore take alternative (b).
The polynomials p,(x) and p}(x) ocourring in this case are denoted by
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U,(y) and aU}(y) respectively (following Spencer and Fano), where we
have put y = «|z|. :

Before giving the explicit forms of these polynomials, we shall consider
what kind of polynomials would be used in corresponding expansions
of the higher spherical harmonic moments N,(z,v). According to the
symmetry properties of these moments mentioned in §22.3, we have

Nn(—'x’ v) = (— 1)”Nn(x» v)
8o that, if the crudest approximation to Ny(x,v) is of the form constant
times e-®#, the corresponding approximation to N, (z,v) will be of the
form constant times (sign z)"e-*#, In other words, the same w{z) can
be used in determining N,(z, v), but p,(z) and p}(z) satisfy the symmetry
conditions )
P—2) = (—1)"p,(2),  p}(—2z) = (—1)"p}(z).

Thus, for even n, we can use the same polynomials as before, i.e. U,(y)
and U}(y), while for odd = slightly different polynomials must be used,
because of the different symmetry properties. It can be shown that, for
odd n, p}(z) should involve only odd powers of z, while p,(z) should be
of the form signx polynomial in |z|. (265.54)
All the N, (z, v) for odd n vanish at z = 0, so that the polynomials appear-
ing in (25.54) may be restricted to those which vanish for |z| = 0. Thus
(25.54) may be replaced by

z X polynomial in |x|. (25.55)
Following Spencer and Fano, we denote the resulting p,(x) and p}(x) for
odd 7 by ax¥(y) and aV}(y) respectively.
We shall now determine explicitly the polynomials introduced above.
For the polynomials U}(y), the condition (26.45) gives
[vUlmevdy =0 (¢ =0,1,.,8—1); (26.56)

0
«©

ie. if 0.k) = [ Us(y)e—v ay,
0
we have d¥g,(k)/dk* = 0 for k = 1 and &' = 0,1,...,8—1, and therefore

gs(k) has an s-fold zero at k = 1. Changing the signs of y and %, we see
that g,(k) also has such a zero at k = —1. Since U/ 1(y) i8 a polynomial of

1 It is of interest to notice that the Laguerre polynomials, which might have been
expected to appear with our choice of w(x), do not do so, because they do not have the
symmetry properties. The polynomials we have introduced are, of course,

necessary
closely related to the Laguerre polynomials and have many similar properties; of. the
recurrence relations (25.59).
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order 28 in y, g,(k) is a polynomial of order 251 in 1/k, and vanishes
for k = co. This gives
(k) = Cify_ LY (26.57)
9s = "7‘:" Ei ’ .

. where C} is some constant. Since U}(y) can be arbitrarily normalized,
provided that U,(y) is suitably normalized, we can take C} in (25.57)
to be unity. Applying the formula for the inverse Laplace transformation
to g,(k), we obtain

N1 (s 2\¢
Ully) = .z-“m(a,) (9%,
* and similarly we have (25.58)
1 (e (=Y
Vz(y) - —‘21(281_1)!( 8 ) Y *
" These formulae lead to the following recurrence relations:
dUl(y)dy = —V],@)

dViw)dy = > UMy [
=0

(25.59)

which closely resemble the recurrence relation for the Laguerre poly-
nomials.

We now consider the polynomials U,(y) and V,(y). For these, the
condition (25.45) and its analogue for odd = give

J’ yUylevdy=0 (8 =0,1,.,s—1), (25.60a)
1]

. and [y hgevdy =0 (¢ =0,1,.,6-1),  (25.60b)
0

~ the subscript s in each case giving the order of the polynomial con-
" cerned. To use these relations, we put

U0) = Gy +upy 2+ 4u,,), (25.61)

- and thence find

. [ YU@Nvdy = O[D(+8+1) 42,y T(t+8)+ ..+, e+ 1)]

= O, T({t+1){(+8)(t+8—1)...(t+ 1)+, (48— 1) (t+ 1)+, ).
' (25.62)
- The quantity in the braces in (25.62) is a polynomial of order s in ¢ with
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the leading coefficient equal to unity; according to (25.60a), it should
vanish for ¢=0,2,.,, 2(s—1). This quantity is therefore equal to
4(t—2)...(t—2s+2). Hence

Upy = [Ht—2)...(0—28+2))y = (—1p2°T(s+3)/T}),

_ [Ut=2)...(t—2842)—(—1)(28—1)...3.1
Uy -1 == [ 1 ]‘--.

= (=1p-129s!-T(s+4)/T(})],
and in general
& (=14 D(s+4i+})
Uy gy = (—1)#-928 ( .1). ; .
ot = SV 2 G TwmED
Substituting in (25.81), determining C, from the normalization condition

(25.45) with (25.58), and rearranging the resulting expression, we can
rewrite the expression for U,(y) as

t = GE(E ) S
I=0

23! \oy Jle—)2!
and similarly we derive from (26.60 b) (25.63)
1 0 2
W0 = i) 4o

25.5.5. The equations for the moments

We can now write explicitly the equations for the various @y (V).
These could be derived by starting with the equations for the m, . (v)
given in § 22.3, combining them with (25.48) and (25.58). However, it is
simpler to derive the equation for a,,(v) ab initio, starting directly from
(22.2). It will now be more convenient to change the suffixes according
to the order of the corresponding polynomials p}(v). Since p}(v) is of
the order 2s or 2541 according as » is even or odd, the quantities called
@,,(v) in § 25.5.2 will now be called a,,,(v) OF ay,,; ,(v), according as = is
even or odd.

With this changed notation, and using the partioular w(x), p,(x), and
P}(x) chosen, the series (25.46) and its analogues become

Ny@,v) = et 3 0, (0)Ujalz])  if n is even
':" ,  (25.64)
and No(z,v) = e~ ¥ ay, ., o(v)oaV(alz]) if n is odd
\ 8=0
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whilst we have instead of (25.47)

Gon(V) = $o f N, (2, v)U}(ax) dx " if n is even
- ' (25.65)
Baes1n(¥) = }a j N,(z,v)Vi{ax)dz if nis odd

Multiplying equation (22.2) for even n by }aUl(xlz|), integrating,
eliminating oN,,,(z,v)/ox and aN,_,(z,v)/ox by integration by parts,
and using the recurrence relations (25.59) and the formulae (25.85), we
obtain

A0 Do)+ a0
(] k 8,

M+l..

-1
- (M, +1) dv’ o [ 1yd— (M, —1)v'?
(2n+l) Z 2kMk vll'.k(vl)aﬂl,n(v )P‘n[ x 2wl k ]

-4

+_2°%S S(v—vy)UY(0)3,, if nis even, (25.66a)
and similarly 0

_a'zo[(ﬂ-l- 10030, 41(0) + Ny 1y (8] 4 (2 1)[@4. Z z’%)')] Bassznl®)

= the right side of (25.66 a) with a,,, , instead of Ggyy, if n I8 0dd.

(25.66 b)

Using (22.45), and rewriting (25.48) in the new suffix convention, it

can beseen that ay, ,(v) and a,,, ,,(v) will vanish for 2s < nand 2s-+1 < n

respectively. This can also be seen directly from the form of the equa-

tions (25.66). Thus the various a(v) can be determined one by one in the
following order: ayy(v), a;,(v), ayo(v), age(v), A31(v), ayq(v), agq(v), eto.

Note added in second impression. An important modification of
Spencer and Fano’s method is described by J. Certaine, Nuclear
Development Associates report NYO 6270, 1956. This modification

concerns the manner in which Ny(z,v) is reconstructed from the
moments.
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HOLTE’'S METHOD

26.1. Holte’s method

THE last method we shall consider is that of Holte (24). This, in its
present form, is restricted to the case of a single non-capturing element,
the mean free path being assumed to tend to a finite limit as the velocity
tends to zero. This method is more complex than those we have pre-
viously discussed, and its applications hitherto have therefore been
very limited. It deserves attention, however, sinoce it is the only method
which covers the entire range of velocities from v = votov=0,andis
not restricted to the case where the mean free path decreases mono-
tonically with the velocity.

For a single non-capturing element, it is clearly more convenient to
take the variation of the mean free path as given by (25.3), i.e.

Uv) = Uv,) ; By(v/v), (26.1)

and not by (25.1). Whereas Holte considers the case of a point source
in an infinite medium, we shall desoribe the method as applied to the
problem of a plane source, which we have studied in the preceding chap-
ters. The two cases are related by the expression (5.44). With Uv)
given by (26.1), the solution of the plane-source problem begins from the

equations (25.5):
2l(ve) 3, B (n+ 1) ss(®, 9+ 41y (2,1 +B)]+
' + (204 1)y (n)ma(p, 1) = S5,4/6}, (26.2)

where we have put %,(5) for 1—g,(5). It may be noticed that 2 By=1,
and B, = 0. .

26.2. The case of constant mean free path
26.2.1. The determination of the transforms .
We shall first illustrate Holte’s method for constant mean free path.
The equations (26.2) then become
UL (2 + 1) 41(P, 1) F1m (D, W] (204 1)l () (D, ) = 8B,0/03,
(26.3)

3505 09 Ee
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since B, = 1. The solution of these equations is given by the continued
fraction (24.4): St - -
= o r 4p
7olB 1) = Fn)+ )+ gl
We have already remarked (see the discussion following (24.4)) that, if
h,(n) tends to 1 as n tends to infinity, the continued fraction converges,
exoept at isolated poles, in the complex p-plane cut along the imaginary
axis from p = —io0 to p = —i/l, and from p = i/l to p = ic0.

The transform m,(p, 1) is inverted by the method of § 24.2.2 and 24.2.3
to give Ny(z,v) (see (25.4)). It is seen from (26.4) that, when A, (5) = 0,
the continued fraction my(p, ) has poles for which p is small, and these
give a large residue because the index of the exponential factor e-*7* is
small. The value of p at the principal pole p, = —i/L(n) is small when
ho(n) = 0, i.e. when = 2. We shall write

(26.4)

Po = —twy(n)/L. (28.5)

Holte considers p, as a function of { = y—2. When { - co (neutrons
of the initial energy), wy({) = 1. Near { == 0, [w,({)]? can be expanded as
a power series. From (26.4), the leading term in this expansion is ¢, and
therefore [wol§)]* = CH(1—by L—by 2= )0 (26.6)
The constants C?, b,, b,,... depend on the values of the A,({) and their
derivatives at the point { = 0.

If the solution is not to be too restricted, it is necessary to know wy({)
for much larger values of {. This is achieved by analytic continuationt
of the function wy({). .

If p lies in the cut p-plane, and { in that part of the {-plane where
ho({) tends to 1 as { tends to infinity, and if 1/my(p, {) is regular in p
and { in these domains, the analytic continuation of py(f) (= —twy({)/l)

satisfies Ymgpo({), {] = O.

This analytic continuation, when performed along the real positive
{-axis and then along the same path of integration as was used in
inverting ¢y(p,%) by the saddle-point method, always gives the

1 We have seen in § 24.4 (Bethe's method) that, if we start with the integral equation,
the convergenoce of the seriee involved is much improved ; the number of hy(n) needed
is therefore many fewer than when (26.4) is used directly. This implies that the exact
form of hy(n) for large n cannot be important, and it should therefore be possible to
remove the effects of the detailed behaviour of such h,(y), leaving only their general
features, without actually using the integral equation. The analytic continuation of
wy({) and of A({) in (26.7) is the means of doing this employed in Holte’s method.
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principal pole py({), since no branch-points of 1/m[p,({),{] occur on
these paths.

The residue of =, at the prinecipal pole is found to be
—38hy A({)/2we({)3 41, (26.7)

where A; = £,(0); this expression contains a function 4({) such that
A(0) = 1. For small {, A({) can be expanded as a power series

AQ) = 1+a,{+a {*+..., (26.8)

and, for points outside the radius of convergence of this series, 4() can
be calculated by analytio continuation.
Thus Ny(z,v) is given by

Ny(z,v) = f;’;’; if A‘é’) ewtiud-zadlh gy, (26.9)

4

where u = 2log(vy/v), and L; is & straight line parallel to the imaginary
axis and lying to the right of all singularities.

The coefficients involved in the above expressions can be determined
as follows. The constant C? is given by

0 = 3k, h,, (26.10)
where hy = [0hy/8];.,. For M » 1,

3 2 1
Cee J {ﬂ(l—m+rm+"')}'
Next, let y and 3 be defined as follows:

y = J(M2—1), 3 = log[(M+1)/(M—1)].
It can be shown from formula (24.3) that

1 G
e-m__[emg"( )= LD P,,( Yo g‘{ Y+ G(,L)} [(“,"_‘F)]",) d.
(26.11)
It may be noted here that this formula differs from Holte’s formula
(87) in that our » corresponds to his 25. This is because Holte uses the

Laplace transform with respect to the lethargy, and not the Mellin
transform with respect to the velocity. In (28.11)

G(p) = {p+J(2+y)) /(M +1),
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~ and therefore

£ 1 |
2 (vt = WD [ 2Dty B 4,
-0 2

(26.12)
where

D(t) = ‘log{\/(l+t’)+t}, E(t) = 14-¢/,J(1412). ,
The integrals in (26.12) are easily calculated by expanding D and E:
- < —i fav+1 v‘ = - < —'i v
D(Y) Zo( - )-_..2v+ . B - szo( - )u,
from which we see that tD(f) and {E(t)— 1}/t are functions of 2 = BEyS
We have to caloulate the terms appearing in the series expansion of

DOE(t) = D)+ E()—11D4).
Even for M = 2, only the first few terms of these expansions need be

computed. As ¢ increases (n being small), the integral becomes very
small. The resulting integrals are of the type

1
Lu= [ Buptdp.
-1

* This vanishes except when k—= is a positive even integer or zero, and
then

Ly =2(k+1), Ly=2(k+2), Iay=Lyl—n)/(k-+nt3).
It is now useful to divide the function D'E into an even and an odd
» function. When i—n is odd, the expansion of the integral in terms of
1/y* begins with 1/y*+1 if 41 > », and with 1/y* otherwise, except for
i+ = 0, when the integral vanishes for n > 3. When i—n is even, the
leading term in the integral is of the order of 1/y% if § > n and 1/yn
otherwise. Sinoe 3 and 1/y are of the order of 1/M, g (the ith derivative
of g,,(n) for y = 2) is O(1/M*) for ¢ > n and O(1/M*) for § < n. It then
follows, by repeated differentiation of the continued fraction, that b;
is of the order of 1/M?*, and so is the coefficient 3, of —{* in the geries
obtained by explicitly squaring the series in parentheses in (26.6).

The coefficients a; in the series (26.8) can be calculated from the
formula a; = —a(kyb,) ok, (26.13)
which is proved by Holte.

Thus the coefficients b,, b,, and a, are all of the order of 1 JM*. The

. radius of convergence of these power series is therefore approximately
proportional to M. It follows from numerical results that this radius is
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nearly M for all M and for both wy({) and 4({). When ten terms of the

series are taken, the results are acourate for Il <04M. For M > 1
’ only the first few g, () need be taken into account; those as far as n == ¢
for M = 12 (carbon), and » == 8 for M = 2 (deuterium) are the only
ones required.

The analytic continuation of (26.8) and (26.8) is done by the classical
method of Taylor series, taking 1 /{ a8 the variable instead of {, and
putting

y=1Y  Hly)=wylly), Liy)=AQ/y).
Taking a real positive y, such that {o = 1/y, is fairly small compared
with the radius of convergence, we caloulate the values of H(y) and L(y)
and their derivatives at y = y,, and form the Taylor expansions at this
point. Another point y, is then taken on the real axis such that &= 1y,
is greater than ), but still a little less than the radius of convergence,
The Taylor series at y, are caloulated from those at Yo- We also put

H(y) = Hy+Hy(y—y,)+..., L(y) = Lo+ Ly(y—y,)+....
(26.14)
The intermediate point y, is taken for convenience in numerical work.
The number of terms in the series depends, of course, on the number of
the b,, §,, and a, that have been computed, and this also determines the
accuracy of the values obtained for large {. This acouracy can be tested
by puttingy = 0in (26.14), since H(0) = 1 and L(0) = 0, from the above,
However, although the series (26.14) seem to converge well even for
y == 0, more accurate values can be obtained for very small |y| ({ - o0)
by using expansions about y = 0. The analytic continuation is extended
to y = 0, calculating H(0), H'(0),..., L(0), L'(0), ete., and completing
(26.14) if necessary with extra terms such that H(0) = 1and L(0) = 0
exactly. Although this procedure is arbitrary, the correction terms are
‘found in practice to be small:

H(y) = 1—kyy~kyy*—...,  L(y) = my+myy*+.... (26.15)

The radius of convergence of these series for {=0,{=o00,and { = L

can be investigated numerically; it seems that they have a common
region of convergence in the {-plane near { — 0 and { = o0.

Some simple approximate formulae w,({) for wy({) are given by Holte:

wy(§) = CV{(1—b,{) for small {, (26.16)
w,({) = a—b/(c+{) for { real and positive,
where the constants a, b, and ¢ are found numerically. Their values are
different in various ranges of £, but in each range the approximation is
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" good, not only to wy({) but also to wj({). This method differs from one due
. to Wick (54) in that the latter gives only a numerical method of finding
A({) for intermediate values of {, each value being taken separately.

26.2.2. The neutron density

Having obtained expressions for 4({) and w,({), we can now perform
© the integration in (26.9). As has been explained in § 24.2.3, the path of
integration Ly in the {-plane is deformed so as to pass through a saddle-
. point along a path of steepest descent. In the present case there is only
_ one saddle-point, which is always on the positive real axis. Since the
, integral is desired as an analytical function of » and z, we proceed as
. follows. The exponential function in (26.9), which is the rapidly varying
function, is taken with wy({) replaced by w,({), the difference being so
small that even the exponential of (—z/l times this difference) varies
slowly, as does A({).

+ To find the saddle-point, we differentiate the index of the exponential
~ in (26.9), with w,({) instead of wy({), and obtain

, tu—(z)wy(}) = 0. (26.17)
Let the root of this equation be { = {,. Since w}({) and w)({) are real
- positive monotonically decreasing functions when { varies along the
positive real axis, and tend to zero as { tends to infinity, {, must be real
and positive, increasing monotonically with 2zful, and {,=0 for
. 2xful = 0. The division of the real {-axis into intervals with various
values of a, b, and ¢ corresponds to a similar division of the values of
2x[ul.
To evaluate the integral, we now expand the integrand about = Lo
and expand the exponential in all but the first and third terms.
© A slight modification is necessary since w,({) has a branch point at
, { =0, and this means that, as 2x/ul tends to zero, i.e. {, - 0, we must
. put { = ¢* and ¢, = ++{,. Then

Nyfz,v) = _327%% %‘i:%euﬂw-mw dé, (26.18)
* where the integral is taken along the appropriate path, and for small
- L where wl(l) 2 OV{(1—b, ),
. we have
‘ Vi, = V22C[ul{1+(14+120%, 23/1%4%)} for small z/ul. (26.19)
" The last relation is applicable if

L= ¢t < 1)12b,,
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and this may be taken as an approximate upper limit to the validity of
(26.18). Hence the condition of applicability is
zful < J(2/3C%;) (~ }M for M large).

For larger values of z/ul, the expression a—b/(c+-{) must be used, with
the appropriate choice of @, b, and ¢.

When {, has been found, }ud®—(z[l)wy(¢?) is expa.nded in a Taylor
series about ¢,, and the same is done for A (¢?), taking ¢ = ¢,+4¢. The
following expression is obtained for Ny(x, v):

Ny, v) == 3Sh1[iu24:‘::‘(i.(¥.2l¢n] 14, et~z »

X & slowly-varying function of z/ul. (26.20)
If w,(§) = OV, wy({) = C[2¥{ = ul/2z, and so V{, = Czful. Thus
'}’“{.—”‘“’.(C.)/l = —x.C’/2u’p,
and w,(¢?) = C%/2ul. For small z/ul, the function of z/ul in (26.20) can
be approximated by unity, and so

Ny(z,v) = 35h, e~0'at (26.21)

J2mu)Covt
the result given by age theory. The higher approximations give correo-
tion terms (§ 23.6); these were first derived by Marshak (38).
For zjul > |J(2/3C?,), we have w,({) = a—b/(c+{), so that
L, = J(2bajul)—,
and

Ny(z, v) = me‘*“*""’“‘”’“"’x a 8.v. function of x and u. (26.22)
w

Aszful > 0,8 - 1,b > k;, c > —ky/k,, and we obtain Wick’s asymptotio
formula (§ 24.5.4).

26.3. The case of variable mean free path

26.3.1. A survey of the singularities

We now take the case of a variable mean free path, and as before we
shall concentrate on the determination of m(p, 7). Let this function be
represented in the form

wo(p, M) = "'o.xo)(P: 7)Go(P, 1), - (26.23)
where (D, 1) is the value of my(p, n) for a fictitious medium in which
the mean free path is constant and equal to its actual value for v = 0.
That is, 7qx,(p, ) i8 the solution of (26.2) with B, = 0 for j > 1. of
course, this m,yy(p, n) is defined only in the complex p-plane cut along



424 ’ HOLTE’S METHOD XXVI, §3

the imaginary axis from p = —ico to p = —1/1(0) and from p = i/I(0)

' %0 p = ic0. Thus Gy(p, n) also is defined only in this cut plane. Let us

. first survey the singularities of Go(p,7) 88 a function of p in the cut
- plane, 7 being fixed.

It has been shown in § 25.2 that singularities of wy(p, ) can arise on.l&

in one of two ways: either because p is an eigenvalue of (25.13), or because
. some =y (p, n+B;) for j > 1 is singular. (It is assumed as before that

&

Be=10 and B; > 0 for j > 1.) In the former case mox0(P, ) has in

. general the same kind of singularity as 7o(P, 7), and Gy(p, 7) is therefore
- regular.t The singularities of G,(p, 7) for some 7 = 7, (say) can arise
. only if some #,(p, ny+B,;) for j > 11is itself singular.} This, in turn, can
» ocour only in one of two ways: either p is an eigenvalue of (25.13) for
© M = n9+B; or n = 7y+B;+B, or ete., or else

»
mo(B0t 3 By) forjy>1,

- i.e, m,(p,c0), is singular for the value of P concerned,

Since ,(p, %) corresponds to neutrons of the initial energy, it should

be regular in the complex p-plane cut along the imaginary axis from

= —i0 to-p = —i/l(v,), and from p = i/l(v,) to p = ico, while

. Gy(p,n) is (as we have seen) defined only in the complex p-plane cut

along the imaginary axis from p = —ioo to ? = —ifl(0), and from

© P =14[l(0) to p = 0. We are thus led to consider Gy(p, 1) only in the
, complex p-plane cut from p = —ioo to » = —i/max{{(0), [(v,)} and

from p = $/max{l(0), {(v,)} to p = ic0. It follows from the above argu-

ments that the only singularities of Gy(p, 5,) in this cut plane are poles

at the eigenvalues of (25.13) for 5 = No+By 1 = no+B;+By, eto.

- (4,3"s. 2 1). Sinoce these eigenvalues cause the poles of 7, x,(p, 1), the
result obtained can be expressed as follows. Let p — +tw,(1)/1(0) be the

poles of m, xo(p, 1) a8 a function of p for 7 fixed. Then the only possible

+ singularities of Gy(p,7) in the complex p-plane cut as above are the
~ poles at the points p = +iw,(1-+8,)/l(0), » = Liw,(n+8;+8;)/1(0),

ete. (j,j’,... 2 1). IfY(0) < I(v,), then, for any 7, Go(p, n) can have only
a finite number of poles in the strip —1/vy) < imp < 1/l(vy). This

t For general n, situations may be found where the singularity of »,(p, 3) is due to
both causes, i.e. p is an eigenvalue of (26.18) for the given », and one of the Py 4 B;)

. is singular. However, it can be shown that this cannot occur for n = 0,

1 This statement assumes, of course, that me,10( 2> 1) does not vanish ; if it did vanish
for some p and 1, while wy(p, n) were not zero, Go(p, 1) would again have a singularity.
Existing caloulations, however, seem to confirm that ,1(0)(?, 1) has no zeros in the

" region of (p, 3) space concerned. Nevertheless, Holte's method could easily be modified

. to take acoount of such extra singularities, should they exist,
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follows from the results of §26.2: we saw in that section that, if p lies in
this strip and re 7 is sufficiently large (> o,, 8ay), my(p, n), and there-
fore Gy(p,n), are regular. This means that +iw,(n-+8,)/1(0) can lie in
this strip only for rey < o,—B,, +iw,(n+B,+B;)/I(0) can lie in this
strip only forre y < oy—B;—By» and so on. If1(0) > l(v,), on the other
hand, all the poles lie in this strip (see §24.2).

The following results can be given regarding the position of the poles
lying in this strip. The points 2 = Fiw,(1+5,)/l(0) are the singularities
of moxa(®,n+B;), i.e. of the Fourier-Mellin transform for a problem
where the mean free path is constant; their position can thus be
examined by the methods of § 24.2. In particular, applying the argument
preceding (24.5), it can be seen that, if for some B; and some real 5 any
of the +iw,(n+B,)/)(0) lies in this strip, and none lies on the real axis,
then the iw,(n+8,)/l(0) nearest the real axis should be purely
imaginary. On the other hand, we should expect from the arguments
of § 24.2.4 that, as re 7 inoreases, lw,(n)| also increases. Thus, if B, is
the smallest non-zero B; and |wy(n)| is the smallest jw,(n)!, then
iwg(n-B,)/1(0) is nearer the real axis than any other 4-iw,(9-8,)/(0),
and than any Fiw,(n+B;+B,)/U0) (4,5° > 1), and so on. That is, if
Go(, 1) has, for some real », poles in the strip

—1/max{l(0),vy)} < imp < 1 [max{l(0), {(v,)}, (26.24)
and none of these is on the real axis, the two poles nearest the real axis
are 8t P = iwg(n-+B)0).

26.3.2. The determination of the transform of the solution, for small p
Having ascertained the region where Go(p,7) is defined and its
singularities in that region, we shall now determine Gy(p, 1) explicitly,
taking first the case of small p. '
For small p, the equations (26.2) give at once

(D, )

=88 (13,
= i~ 2 B’[<2n+3>h,.ﬂ(n+ﬁ,>

10 ] }
RiCT v :n)
Putting #» = 0 and dividing through by the corresponding series for
Tox0)(2, 1), we have

-]

Gutpm) = 3 (P Goa () (26.25)

y=
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"The amount of algebraic work needed to evaluate the successive Gy4,(n)
- can be somewhat reduced by using certain symbolic operators, but for
_ simplicity we omit this treatment, which can be found in Holte’s paper.
The radius of convergence of (26.25) is determined by the position of
- the singularity of G(p,n) nearest the origin. If ren > 2—8; and p is
‘real, the integral (25.4) defining my(»,7+p,) converges, i.e.
_ Toxa(P, n+B,) is regular for all real p. It therefore follows from §26.3.1,
. assuming that myyq(p, n) has no zeros, that the singularities of Gy(p, 1)
" nearest the origin for real > 2—8, are either

= £3/l(v,) }
. or P = tiwg(n+p)K0))’
" whichever is the smaller.

- If, however, it is possible that m,xy(p, 7) may have zeros, the singulari-

* ties of Go(p, n) mentioned in § 26.3.1 must be augmented by the singulari--
; ties due to theee zeros, and therefore we can draw no immediate con-

. clusions concerning the radius of convergence of (26.25). However,

when the coefficients in (26.25) have been calculated numerically, we

can find their rate of increase and easily discover from this whether

. Moxa(2, n) has any zeros in the circle :

Ip| < min{1/l(vy), we(n-+B1)/U0)]. (26.27)

It has been found that, in the applications of the method made hitherto,
" there are in fact no such zeros.t

(26.26)

26.3.3. The case of moderate distances from the source when the mean free
path varies only slightly
The subsequent analysis depends on whether the poles

P = iwe(n)/l0)
- of moxg(P, ) nearest the real axis lie

(i) well within the circle of convergenoce of (26.25);
(ii) inside this circle but near its circumference;
(iii) outside this circle.

1 Holte distinguishes the case where all the B, are positive from that where some of
them are negative. In the former oase, for 7 real and greater than 2 ({ > 0), Holte shows
that all the G, .,(v,) in (26 25) are poultlvu, 80 that the alngularitios of (I.,(p. ) noarest
to the ongm lie on the i imaginary axis. He therefore conoludes that in this case the
* singularities in question are given by (26.26), whereas when some B; are negsuve he
fails to draw this conclusion. The distinction is difficult to understand, however, since
the real criterion is whether m, yo)(p, 7) has any zeros in the cirole (26.27), and this cannot
. be affected by the signs of the By: the definition of m 1)(2, 1) involves only B,, which

is always positive.
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We take first case (i), and start by determining the physical conditions
to which it corresponds. It is assumed throughout the following analysis
that 7o xe(p, 1) has no zeros in the circle (26.27), so that the latter circle
is the circle of convergence of (26.25).

If F-icwg(7)/1(0) lies well within the circle (26.27), it also lies well within
the strip (26.24). Then, applying the inversion formula to the double
transform my(p, #) and evaluating the inverse Fourier transform integral
by the method of residues, we can easily verify the following facts as for
the case of constant mean free path.

Firstly, the main contribution to Ny(z,v) comes from the pole at
P = —iuwy(n)/U(0). The contribution from the next most important pole,
thatat p = —iwg(1--B,)/1(0), is of the order of exp[ —B, log(v,/v)], and so
on, so that, if 8, log(v,/v) is sufficiently large, the contribution of all poles
except the first may be neglected.

Secondly, the evaluation of the inverse Mellin transform integral for
thepoleat p = —iwq(n)/L(0) can be carried out by the method of steepest
descentt (see §24.2.3).

Thirdly, if 7, is the saddle-point, 7, tends to infinity with z. If n
tends to infinity, wy(n) tends to unity, and so does wy(n+8,), so that, if
x is large, —iwy(7)/l(0) cannot lie well within the circle (26.27). Thus case
(i) can be realized only for small or moderate distances from the source.
If 1(0) < Uv,), it is easily seen that case (i) can occur only if wy(n) is
considerably less than /(0)//(v,). The available range of 5, and therefore
of z, is thereby further restricted, and for 1(0)/l(v,) sufficiently small
there are no values of  which give case (i). This case can therefore arise
only for [(0)//(v,) greater than or not much less than unity, and for z
fairly small. It can be shown that, under these conditions, case (i) does
in fact occur.

We shall now determine the solution for this case. It is clear from the
above that the leading term in this solution differs from that for constant

mean free path only by the appearance, in the residue at the pole
concerned, of an extra factor

Go[iwe(n)[U(0), 7] = Gy(n), say. (26.28)
Thus, if the residue of moxy(p,n) at p = "iwo("))/l_(o) is
‘ —38h; Ay(8)[20] iwe(n)H(0),
where 4,(0) = 1 and &, is the value of A,() for { = 0, see (26.7), the

t Though this is not quite accurate, the necessary correction (sse § 26.3.4) is unimpor-
tant for the present argument. ’
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corresponding residue of ny(p, ) is.— 3.8k, 4(L)/20} tewy(7)(0), where

A(L) = A(D)Gq(). (26.29)

The quantity Gy(n) could have been calculated from (26.25). This,
" however, would involve needless algebra, and Holte suggests that this
can be avoided by expanding G,(7) in a Taylor series about 5 = 2, i.e.
{ = 0. We now write Gy({). It can then be verified that, for { = 0,
wg({) = 0, 80 that G4(0) = G(0,0). For p = 0, myye(p, 1) is the same as
7o(P, ), by the formula preceding (26.25), and therefore Go(0,0) = 1.

Thus Gy(l) = 14-Goy L4+ Tog O+..., (26.30)

- where the coefficients can be determined from those in (26.25). The
, radius of convergence of (26.30) can be estimated as follows. The
~ singularities of Gy(p, ) are, as we have seen, at p = +1/l(v,) and at
+ the various p = tiw,(n+-B)/U0) (j > 1), p = Fiw,(n+B;+B,)/I(0)
_ (4,3° 2 1), ete. We know, however, that wy(7) cannot be equal to any
- w)(n+8;) (j = 1), etc. Thus these latter singularities of Gy(p, {) cannot
* give rise to singularities of Gy({), and the only singularity of the latter
" i8 at { == {*, where {* is the root of

. wo(*) = U(0)/l(v,). . (26.31)
* The series (26.30) therefore converges for |Z| < [L*|.

. Hitherto we have discussed only the contributions from the poles of
. my(p, 7). However, since m(p, ) is defined in the cut p-plane, there will
* also be a contribution from the integral along the two sides of the cut.
. I£1(0) > Yv,), this contribution is always negligibly small, as in the case
; of constant mean free path. If I(»,) > (0), on the other hand, this con-
* tribution may become important. Holte has investigated the order of
, magnitude of such a contribution, and has obtained the following simple
- eriterion, Xf |{,| < [{*|, where {,is the saddle-point and {* is the solution
of (26.31), the contribution from the cut may be neglected. If this in-
- equality does not hold, then the cut contribution is comparable with that
. from the pole &t p = iwy(Z,)/l(0). We shall return to the latter case in

§26.4; meanwhile, we shall examine the case where 1ol € 1C*|.

26.3.4. The application of the method of steepest descent

There is a certain correction which must be made to the solution so far
+ developed. In applying the method of steepest descent, the integrand
is divided into a fairly simple factor which varies rapidly and a slowly
. varying factor which is assumed to have little or no offect on the position
of the saddle-point. Hitherto we have regarded @, in (26.29) as a slowly

.
-
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varying function, but a closer examination shows that this is & poor
approximation. It has been foundt that a much better one is obtained

by putting G =6, (26.32)
1 B, B,
h e - ) w4 ==
where @3 j-zo ,I.Eo BB (J=j' =0 exoluded),

and G*({) is regarded as the slowly varying function.

This means that the position of the saddle-point {, is given (approxi-
mating w, by w, as in §26.2) by
. $uta = {&l0)wy(Ly), (26.33)
and not by (26.17).

It can easily be shown that, on terminating the expansions involved
at the leading term, and using (26.33) instead of (26.17), we reach the
same expression for Ny(z,v) as is given by age theory, whereas-such .
- agreement is not obtained on using (26.17), i.e. G,({) and not @%({). On
retaining further terms in the expansions, we find correction terms whose
use carries us beyond the range of applicability of age theory. If
l(vy) < (0), analytic continuation can be used to obtain a formula
analogous to (26.22) which is applicable at all distances. If, however,
1(0)/i(vy) < 1, then, no matter how oclose to unity this ratio is, {, will
become very close to {* beyond a certain distance; physically speaking,
neutrons which have had a mean free path near I(v,) for most of their
lifetimes will predominate, The procedure required in this case will be
described in the following section.

26.4. The case where the mean free path decreases with the

velocity

26.4.1. Preliminary transformations

Hitherto we have considered only case (i) of those mentioned at the
beginning of § 26.3.3, We shall now consider cases (ii) and (iii). It is
obvious from our previous remarks that these correspond physically to
the situation where /(0) <.lv,) and 2 is fairly large. In case (i), the main
contribution to the inverse Fourier transform comes from one of the
poles of my(p,n), but now it will come from the integral along the cut.
For a fixed p, on the other hand, mo(P, ) is a meromorphio function of »,
Le. its only singularities are poles. It is therefore more profitable to invert
the Mellin transform (i.e. integrate with respect to ) first, using the
method of residues, and then to invert the Fourier transform,

1 Holte states (without proof) that, as M, the nuclear mass, tends to infinity, @4({)
tends to e9t,
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The function (p, ) has, of course, an infinite number of poles, but
if we again assume that B, log(v,/v) is fairly large we may neglect all
" poles except the ‘main’ one, i.e. that for which re is greatest. This
. pole obviously corresponds to p = J-iw({)/1(0). If this pole is at {y(p),
we find by solving (26.6) for {

L) = _[.?%‘_:ﬂ’.,_ﬁ[_f’cl(‘o_)]‘ Fo (26.34)

and for large » (26.14) gives
ipl(0)—H, HJipl(0)—H,]? -1
zﬁ(p) - {y1+"p (}‘)( 0__ 2[‘? (H)a 0, +“.} .
1 1
Denoting by 4(p) the result of substituting (26.34) into (26.29) (for p

inside the circle (26.27)), or the analytic continuation of this function

(otherwise), and applying the Fourier transform inversion formula, we
have similarly to (26.18)

(26.35)

Nyz,0) 38k f A(p)ly(ple—ter +ialostoin) dp. (26.36)

o) ~  4mo¥iX(0) )

26.4.2, The behaviour of the integrand

Before we can proceed to evaluate (26.36) we have to examine the
behaviour of the integrand, and in partioular of A(p). We have seen
above that the important singularity of G,({), and therefore of 4A({), is
at { == [*. Aooording to the definition of {* (see (26.31)) and of A(p),
the important singularities of A(p) are therefore at p = +ifl(v,). If
{(v) varies monotonically and dl(v)/dv # 0 for v = v,, we can use the
analysis of § 25.4 (in particular, formula (25.43)) to show that the
behaviour of 4(p) at these singularities is of the form

A(p) = Z@)[1—iplve)]* = P@)[1+2(v,)]*,  (26.37)

where «is |g,]/y in the notationof (25.43), Z(p) ishoundedat p = —i/l(v,),
and P(p) is bounded at both p = +i/l(v,). .
The derivation of (25.43) shows that the firat part of (26.37) can be
written more explicitly as

Ap)= '.Z« rx——iﬁ%w B+0[{1—ipl(vplog{l—ipl(z,)}],
(26.38)

say, where the g,, and y have the same meaning as in § 25.4, B is some
constant, and the B, (p) are regular at p = —i/l{v,).
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The available numerical results concerning the eigenvalues of (25.36)
suggest that, whenever (25.36) has more than one eigenvalue, the
difference between the two most important eigenvalues is greater than y.
Thus, by comparing (26.38) with (26.37), we see that, near p = —ifl(v,),
Z(p) can be expanded as .

Z(p) = Zy+{~ip+1/Uve)} 2y +ip—1[Uo,)}*Z +

~-+-terms tending to zero faster than (p+1/U(vy))maxtler,  (28.39)

where o = « if (25.36) has only one negative eigenvalue and
a’ = (lgo]— g, ])/7, say, if there are two or more negative eigenvalues

and g, is the second most important of these, and Z,, Z,, and Z are some
constants.

26.4.3. The evaluation of the integral

- The above results enable us to rewrite (26.36) in a more convenient
form. We substitute the first part of (26.37) in (26.36), and expand all
quantities about p = —i/l(v,), putting ‘
ip—1Uve) =k, Lop = Lo(k) for E=0, L= LF) for E=0, ete,,
Z(p)iu(p) = K(E) [in Holte’s notation & = k/1(0)—1/lv,), Lo = 20,

' L0 = 2(0)6;,, and R(E) = sL(0)K(k)],
and noting that formula (26.39) leads to a similar expression for E(E),
say R(%) = R,+ K, E+ B(—F)~ +smaller terms. (26.40)

The smaller terms not written explicitly in (26.40) are rather complex
in nature, but they can be roughly taken as proportional to I3, say
E,k*. For convenience we shall henceforward write the formulae in
terms of the lethargy « = 2log(ve/v). The integral (26.38) then becomes

Nz,v) _ 3Sh1[l(vo)]1““‘e*“;“_z,,(,.)x
1) 4mAT(0)

x d[ (=B [ B+ K, B+ By B+ R(—F) |1+ F(ve)] 2 X

X oxp|— (z— Julio)b-+3ulsy B+ O()] dF, (26.41)

where C, is the path of integration in the complex %-plane cut along the
real axis from & = 0t0 & = +c0. In choosing this path, we try to make
the integrand decrease as rapidly as possible as |k] increases, with the
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" condition that the path mustlie to the left of the cut. Whenz—ju{, <0,
we can use the simpler method of §§ 26.3.3 and 26.3.4. We shall therefore

- be concerned with the case where z— july, > 0; it can also be shown
~ that {5, >0,

The choice of Cy and of the procedure for integrating in (26.41) depends
- on which factor in the integrand is the dominant one. There are four
. cases, according as the dominant factor is ’

exp{Julg, k2] _ (case (a))
oxp[—(z—ulp)k] (case (b))
{1 +Elwe)}H—~F)-*  (case (¢) |
or E(E) (case (d))
' Below we shall consider only cases (a) and (b). Holte has discussed case

(¢), but his procedure seems somewhat uncertain,t while case (d) does
- not appear to be of any interest in practice.

(26.42)

Case (a)

. We first consider the case where exp{}uls,k?] is the dominant factor.
' Itoaneuﬂybeshownthatthiqwil.lbesoif

ol(v,) < z—$uly < (Fuloo). (26.43)
" .A further examination of (26.43) shows that this condition requires a
fairly large {5, (> 10/*(0), say) and applies only to moderate changes
in the mean free path. Here C, is taken as a straight line parallel to and
to the left of the imaginary axis, but infinitely close to it. All factors
except the dominant one can then be expanded in powers of %, and we
obtain a series each term of which involves integrals of the form

J' exp[{ulsok)(—k) dZ,

1 In dealing with case (c), Holte returns to (26.36), subatitutes for A(p) from the
second part of (26.37), and evaluates the resulting integral by the method of steepest
desoent, regarding P(p) as a slowly varying function and including {1+p*%yv,)}~* in
the rapidly varying factor which determines the position of the saddle point. The un-
ocertainty is that we might expect the path of steepeat descent in this case to have so
great a curvature that it cannot be approximated by a straight line. In other words, on
caloulating the correction terms as in the derivation of (24.10’), we might find that these
terma were not small. The following fact supporta this idea. If the procedure is applic-
able, there seems to be no reason why it should not be applied for z < $ulj,, whilst, if
we use it for small x, the result, as Holte remarks, is in some disagreement with the result
« . of age theory. Only & further investigation can show whether this is because case (6)
corresponds to such a rapid variation of the mean free path that age theory is inapplio-
able, or whether the method of stecpest descent is unsuitable in the present case,
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which are closely related to the gamma function, The result is

N, y ) 1-a " »
S =~ 2 e b

X { m -+ terms small for (Jufl)t> max[z—uly,, 1]}

(26.44)
Case (b)

. The second case in (26.42) is where exp[—(z—}ul}y)k] is the dominant
factor for small and moderate %. If thig is 8O,

z— *"‘(t')o > “l("o).
> (Fulio)t, (26.45)
> R/R,

These three inequalities state that for small & the second factor listed in
(26.42) is dominant over the third, first, and fourth factors respectively.
For sufficiently large %, however, the first factor is always the dominang
(i.e. most rapidly varying) one. We should therefore try to make the
product of the first two factors decrease as rapidly as Dossible, i.e. to make

~(z—fulglb+Jull Bo
as nearly real and negative ag Possible, under the condition that the path
lies to the left of the cut. The path will then start from % = F,—sco,
where %, = [x—}u{&]ﬂ[}u{&]’, Pass parallel to the imaginary axis to
& point just below the real axis, thence just below the real axis to the
origin, round the origin, returning just above the real axis to & = %, and
thence parallel to the imaginary axis to % — Eo-+ic0. We denote by C,

the part of the path which follows reF = %y, and by C, the path along
the cut and round the origin. Thus

A=l

The integral along G, is & small correction which may be neglected in the
first approximation; if Decessary, it can be evaluated by the same means
a8 the integrals in case (2). The dominant factor in the integral along C,
is exp[—(a:—&u{’oo)ﬁ]. Expanding all other factors in powers of %, we
obtain a series of which each term involves an integral of the type

% ! oxp(—yk).(—B)* dE (y = z—}ull,),

5396.90 : Ff
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* and these are closely related to the incomplete gamma function,

«©

Q(1—s,y) = f et dt, (26.46)
The result is '
Ny=, Shy ik ,
= -t s
N [No(z, v)],
X {V(a: y)— ('a:'{é.;)—fo"(a 1,3/)'*----} + —gl—(r ’
o (26.47)
. 1 (1"'81 y)
| where 09 = 15 =R |
' x-—iu{' 1 ’ \,

 Q(1—s,y) is defined by (26.46), and [N,(z,v)],/l(v) is the contribution
~ from C,.

The asymptotic expression for Ny(x, v) as z tends to infinity can easily
~ be obtained by retaining in (26.47) only the terms dominant in this limit.
- This gives

1%((::’)”) = ‘”fli}al);wj(z:) (@— Julo)*1[Uv)] et be—son,  (26.48)

which is a refinement of Wick’s result (25.44).
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Some remarks regarding the completeness of the sets of eigenfunctions

Nio(r,v82) and N, ,(r, vR2)

Two recent publications (60, 61) have given rise to some further considerations
regarding the question whether the eigenfunctions N, o(r, v2) under variable time-
constant form a complete set.

For example, let us consider a cylinder of fixed radius and large but finite
height h, and examine solutions of the transport equation such that the neutron
distribution is almost independent of the axial coordinate except near the ends
of the cylinder. LetA,(h) and Ny ,(r,v82; h) be the nth eigenvalue and eigenfunction
under variable time-constant, and y,(h) and N, o(r,v82; k) those under variable
composition; let

Ap(c0) = h’_h:.n;o)t,,(h), ¥Ya(0) ==hl_i,m;'y,,(h), ete,

Now, although y,(c0) and N, ,(r, vQ; o) are in fact the nth eigenvalue and eigen-
function for an infinite cylinder with the neutron distribution independent of the
axial coordinate, the same is not neceasarily true of A,(c0) and Ny u(r, v62; 00). If

reAy(w) > — v/l (v)

for all neutron speeds v ocourring in the system, then A,(c0) and Ny o(r, v82; 0) arve
the nth eigenvalue and eigenfunction under verying time-constant. If, however,
this inequality does not hold, the corresponding fictitious inverse total mean free
path (see § 3.2) has a negative real part for some v; the integral (2.36) diverges as
R, > oo (that is, N, ,(r,v82; c0) violates the condition at infinity) for some £2, and
N, (1, v82; 00) is not a possible solution for the infinite system. On the other hand,
for all finite A the range of integration in (2.36) is finite, and no restriction need
be placed on Aq(h). That is, unless the above inequality holds for all 1, some
solutions are lost on passing to the limit A - 00, and so the N o(r,v82; 0) do not
form a complete set, since the N, ,(r, v&2; k) are evidently linearly independent for
any given k. Lehner and Wing (60), however, have shownt that the inequality
must be violated for some n. The N;(r,v; ), therefore, do not form a com-
plete set.

The above restriction on A, has a simple physical meaning. Let us again con-
sider a cylinder as above, and suppose it irradiated in & manner which changes
abruptly at time ¢ = 0, In a rod of finite length h, after a time ¢ = A/Vpyes there
will be no neutrons which originated before £ == 0, In an infinite rod, however,
such neutrons will always be present. They will, it is true, not noticeably affect
the first fow terms in (3.6); but the terms for which ), does not satisfy the above
inequality will be entirely dominated by neutrons originating in the parts of the
rod added in extending it to infinity. Thus, in obtaining the complete solution of
a time-dependent problem (as opposed to the leading terms only), it is not per-
missible to replace a finite body by one which extends to infinity even in one
direction.

We conolude, therefore, that the N ,(r, v&2) form a complete set only for a system
finite in all directions, However, the eigenfunction expansions used in this book
t Their discussion relates to an infinite slab, but the argument is unaffected.

3595.99 rf2
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are always in terms of the N, .(r,vR). Though the above arguments place no
restriction on the completenees of the latter set, there may be other considerations
which disprove it.

For example, let the scattering be isotropic in the L system. Then, from (2.31)
and (2.37), one and only one N, ,(r, v82) corresponds to each n,a(r,v). By (3.29),
the n,.(r,v) are linearly independent. Let the function T(r,v82) be such that
§f T(r,v8) dQ = 5, ,(r,v) for a particular n’, but 7'(r,v£2) and N, n(r, o) are
not the same function of . Then 7'(r, vQ) cannot be expanded in terms of the
N.u(r,v82), 50 that the latter do not form a complete set, although the n,,(r, )
may or may not do so. Although this conclusion holds for scattering isotropic in
the L system (and similarly for the case where the scattering function is a poly-
nomial in £2.9’), the reeults of Chapter II1 (and similarly of Chapter XVII) are
unaffected, since they could have been derived in terms of the N,0(T, v), starting
from the integral equation.

For the eigenfunctions under variable time.constant, however, there is no
orthogonality relation for the n,(r,v) (see § 3.7), and so the n4,0(T, v) need not be

linearly independent. The completeness of the set of N, ,(r,vQ) is not, therefore,
excluded on these grounds.
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Carlson’s method

Carrs0N(58) hasrecently proposed a new numerical method forsolving problemsin

plane, spherical, and cylindrical geometries, involving any energy distribution and

scattering law, and all types of inhomogeneous medium. The method is so lengthy

that it can be used only in conjunction with rapid electronic computing machines,

With these, however, it is entirely suitable for problems of up to a certain degree

of complexity which depends on the speed and storage capacity, and it has been
" tested on a variety of problems at different institutions,

The principle of the method is to divide the solid angle into n segments, and to
approximate the neutron population in each segment by s linear expreasion defined
by its values at the extreme directions within the segment. The value of n deter-
mines the order of the approximation, whenoe the term ‘8, method’ generally
applied to Carlson’s procedure. It has been found that even the Sy approximation
is an improvement over diffusion theory, while the S, approximation is adequate
for most practical purposes,

The Boltzmann equation is integrated over each separate segment of solid angle;
another equation is derived directly from the Boltzmann equation by taking the
neutron direction £ to be along the negative polar axis. The neutrons are divided
into any convenient number of groups as regards energy (cf. Chapter XIX) and
Pposition (as in the Monte Carlo method), and the spatial dependence of the neutron
population is represented by linear functions as with the angular distribution. The
Boltzmann equation, which is of the form (2.4), is thus replaced by sets of coupled
difference equations in space, time, and angle. The equations for each energy
group contain on their right sides sums involving the neutron populations in that
group and in groups of higher energy, together with the source funotions in that
group. The right sides of the equations are referred to as the source terms. The
resulting equations are then solved by iteration (for a time-independent problem),
starting with any provisional source terms, solving the difference equations for the
neutron population, and effecting the summation to give the second approximation
to the source terms. The appropriate boundary conditions and symmetry condi-
tions are used in performing this integration. The direction of integration is taken
to be along the direction of motion of the neutron, since this tends to reduce the
errors of integration. In a critical-size problem, the result of the iteration process
will usually be that the source term is ultimately multiplied by a constant factor
at each iteration. The caloulation is repeated for various sizes of the system, and
the results are interpolated to give the size for which this constant factor is unity.
In time-dependent problems, the actual source at some initial time is taken and the
equations are integrated forward in time. The reader should consult Carlson’s
report for further details of the method.

Carlson states that some 25 iterations may be necessary for a time-independent
8, calculation, with one energy group and 25 radial points, the system being
spherically symmetric. Spinney (unpublished) has found that this number of
iterations does not give such good convergence in similar caleulations for a slab
of fissile material. The convergence is judged by taking the ratios of successive
source terms at each point in the system; these ratios should ultimately become
constant. Some 40 iterations were needed to give a ratio differing by lees than
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“ 0-02 per cent over the system. It should be noticed that the figure of 0-02 per cent
" is by no means unnecessarily accurate in dealing with critical-size problems. With
. 2 energy groups and 32 spatial pomts, Underhill (unpublished) also required 40
~ iterations to obtain convergence in an 8, calculation for a spherically symmetric
- system of two medis. It does not seem that even moderately complex problems
. (for example, a cylindrical geometry) can be handled by Carlson’s method without
. expending an inordinate amount of time, at least with the machines at present
. available.
. However, although Carlson’s method is lengthy and less elegant than (say) the
- spherical harmonics method, it has the advantage of being much more easily
. adapted for work on an electronic computer when one is available. This feature
' becomes particularly important when the properties of the medium vary con-
- tinuously with poaition, so that the equations of the spherical harmonics method
* themselves have to be integrated numerically.
For a fuller acoount of the method, sce the discussion by J. H. Tait in Progress

in Nuclear Energy, Series I (Physics and Mathematics), Volumo 1, pp. 257-9,
" Porgamon Prees, London, 1956,
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—, physical properties of, (I) 1 f.

=, prompt, 8.

~—, rest mass of, 2,

~- traffic, 41 n.

— transport theory, xvii ff,

Non-re-entrant. surface, 21.

Non-thermal neutron, 3.

One-group theory, (IV) 39 ff,

— with isotropic scattering, 41.

One-velocity-group theory, xviii, 39 ff,

Optical depth, 87.

Optical distance, 27.

Optical reciprocity theorem, 48f., 82f., 209.

Orthogonality relation, 32, 35, 49 f.

— in diffusion approximation, 107 £,

— in Feynman's method, 307, 312.

-~ in multi-group theory, 263.

— in perturbation method, 191.

— in spherical harmonios method, 138,
142 f1,

— under variable composition, 35.

— under variable time-constant, 35.

— in variational method, 195,

Perturbation method, (X1V) 183 ff.

—, first-order perturbations, 183 ff.

—, higher-order perturbations, 193 f.

— in multi-group theory, 282 f.

— in multiplieation problems, 192 f,

—, perturbation in the eigenvalues, 183£

—, perturbation in the flux, 190 ff.

—, statistical weight theorem, 187 ff.

— — in diffusion approximation, 188 f.

—, variation of the equations, 184 f.

— in Wick's asymptotic solution, 387, 389,
391, 406.
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Plane case, 87,

Plane geometry, 64 ff., 67 ff., 87, 102, 114,
116ff.,200ff.,213 f¥., 237f.,287, 287, 298,
3185, 324, 410, 417.

=— disorete ordinates method, 174 ff,, 181,

— in slowing-down problems, 324.

— spherical harmonics method, 116 ff,

~= ~, multi-group theory, 277 f.

Polynomial approximations method, v,
(XX) 285 ff.

—» applicability of, 285 f,

~—, boundary eonditions, 288, 291,

— for systems in which low-energy neu-

*  trons predominate, 295 ff,

— use of spherical harmonios method,
287 f.

~—, supplementary equations, 201,

— oorrected for the presence of thermal
neutrons, 297 ff.

Potential scattering, 4, 11.

Production by fission, 13.

Prompt neutrons, 8.

‘Peeudo-hydrogen’, 286,

‘Pure’ madium, 9,

Quantum.mechanical effects, 2, 4, 9.

Radiative transfer, xix,
Reference medium, 358. .
Reflector, 97, 110, 808, 311.
Resonance energy, 11.
Resonance soattering, 4, 11.

8, method, 437 f,

Saddle-point method, 375.

Soattering, 2 ff,

— angle, 3, 19,

— -—, mean cosine of, 241, 350.

~— oross-section, 10,

-, elastio, 2 ff., 308, 322,

—, inelastio, 2, 5 f., 10, 328, 360.

— mean free path, 10,

~, potential, 4, 11.

~— properties, 188 f,

-, regonance, 4, 11.

Bemi-infinite medium, see Infinite half-
space ; Milne's problem.

8erber-Wilson method, v, (IX) 109 fr,

— acouracy and limite of applicability of,
113 ff.

~~ with anisotropio scattering, 246 f.

— in Feynman's method, 307,

— in multi-group theory, 266, 272 f.

—, Serber’s formulation of, 109 £,

—, Wilson’s formulation of, 110 ff,

Blowing-down density, 327 f.

—, in age theory, 350 f,

Slowing.down length, 321, 842,

SUBJECTS

Blowing-down media, 252.

Slowing-down problems, (Part IV) 321fr.

-, &ge theory, (XXIII) 346 ff.

—, defined, 254,

~ for general geometry, 825 f.

— goneral survey, (XXTI) 821 ff,

—, at large distances from the source,
(XXIV.XXVI) 870 fr.

— for plane geometry, 324.

— for spherical geometry, 324 f,

—, types of, 321 ff,

Smoothness of funotion, 847 n.

Sources, 15.

—, independent, 185.

Spectrum-regenerating media, 252.

Bpectrum-regeneration problems,(Part III)
251 f¥.

—, defined, 254,

8pencer and Fano’s method, 407 ff.

—, applicability of, 407,

~—, ohoioe of weight funotion, 410 £,

~—- equations for moments, 415 f,

-h;n;menu and polynomials, 408 £,

Spherioal geometry, with anisotropio
sosttering, 288 f., 318 f,

~~ in diffusion approximation, 86 f., 1085.

~— in discrete ordinates method, 181 f,

~ in Monte Carlo method, 225 f.

— relation to plane geometry, 64, 96,
824, 341.

~— in Berber~Wilson method, 109 #,

~— in slowing-down problems, 824 f.

— in spherical harmonios method, (XI)
146 ff.

— —, boundary conditions, 151 ff.

=~ —, in slowing-down problems, 324 f.

— in variational method, 198 f,, 210 ff.,
214 f,

Spherical harmonic moments of angular
distribution, 117.

~— in disorete ordinates method, 178 f,

Spherical harmonics method, v, (X.XII)
116 1.

— with anisotropio soattering, 247 f.

—— combined with iteration method, 219 f,

~- compared with discrete ordinates
method, 181 £,

— for oylindrioal geometry, 169 ff,

— in Feynman’s method, 307.

— for general geometry, (XII) 157 f1.

— —, current, 164 f.

— —, differential equations, 159 ¥,

-— — — in B, P,, P; approximations,
161 ff.

~— —, flux, 163 f,

~— — in multi-group theory, 279 f,

~— —, orthogonality relations, 144 f,

449
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Spherical harmonics method for general
geometry, reduction of equations, 163 ff.

" a— — in slowing-down problems, 325 £.

— in multi-group theory, 277 ff.

' —, P, approximation, 139 ff., 280 f., 357 £.,

362.

- - for plans geometry, (X) 116 ff,

~— —, boundary conditions, 126 ff., 278 f.

- == —, ootfficients and exponents, 118 ff.

— — in multi-group theory, 277 ff.

— —, multi-layer problems, 137 ff.

—— —, 0dd and even order approximations,
127 f.

— —, orthogonality relations, 142 ff.

~— -, P; approximation, 139 ff.

: = — in slowing.down problems, 324.

— {n polynomial approximations method,
287 £,

— in slowing.down problems, 324 ff.

— for spherical geometry, (XI) 146 ff,

— —, ssymptotio angular distribution,
1490 £,

+ == =, boundary conditions, 161 ff.

— — in slowing-down problems, 324 f.
—, Yvon's modification, 171, 180n,,
181, 248.

. Stationary problems, 28 ff.
. Btatistioal weight theorem, 187 ff.

—, applications of, 189 £.

_ — in diffusion approximation, 188 L., 283.

— in multi-group theory, 283.
Bteepest descent mathod, 375.

" Suberitical system, 31.

Superoritical system, 31.

* Symbolio age, 8562.

Thermal diffusion length, 364.

Thermal equilibrium, 44 £., 50 n.

Thermal motion, 8, 45.

Thermal neutrons, 8 f., 48 ff., 255, 297 .,
361.

~—, upper limit of spread of, 208,

Thin absorbing layer, boundary conditions,
135 f1., 153,

" Three-group theory, 256.

Threshold prooees, 12.

Time constant, 31.

Time-dependent problems, 29 ff.

Total cross-section, 9.

Total mean free path, 8.

Traffic of neutrons, 41 n.

Transient term (transient part), 58, 62, 94,
126, 149, 177, 272.

Transport approxiration, 241 n.

oroas-geotion, 241,

BUBJECTS

Transport equation, 16 ; see Boltzmann
equation.

Transport mean free path, 241.

Trial funetion, 196.

Two adjacent half-spaces, constant cross-
section approximation with isotropioe
soattering, (VII) 87 ff.

— —, agymptotio flux, 88 ff.

— —, interface angular distribution,
current and flux, 90 f.

— — with sources, 91 ff.

Two-group theory, 265.

~—, modified, 360 ff.

Variational method, (XV) 195 ff.

— for anisotropic scattering, 241.

—, applications of, 108 ff., 209 ff.

-, continuous spectrum, 197 f., 204 ff.

— in eritical-size problems, 195 ff.

— for finite systems, 198 ff., 202 ff.

—-, functionals, 196, 202, 207 £,

— for homogeneous equations, 196 ff.

— for infinite systems, 197 f., 204 ff,

— for inhomogeneous equations, 202 ff.

« in Milne’s problem, 209 f.

— in multi.group theory, 283.

— for slowly varying trial functions, 200 ff,

—-, trial function, 196.

— in Wick’s method, 389, 404.

Varying chemical composition, 28,

Verde and Wick’s method, 396 ff,

—, evaluation of the coefficients, 398 f.

—., inversion of the Fourier transforms,
300 ff.

—, nature of the singularities, 306 £,

Wick’s asymptotic solution, for constans
cross-sections, 384 ff.

— —, applicability of, 391,

— —, final results, 390 f.

~ —, golution of homogeneous equation,
388 1. '

~—, for variable cross-sections, 401 ff.

— —, final results, 404 ff.

— —, reduction of the equations, 401 ff,

Width of resonance, 11.

Wiener—Hopf method, 67 ff., 78.

—, extension of, to anisotropic scattering,
244 ff.

- «—, {0 multi-group theory, 271.

e =, 0 two adjacent media, 87 ff.

‘Yvon's modification of spherical harmonics
method, 171 ff., 180 n., 181, 248.
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